Mind Mapping: A Technique for Metacognition

by Charlie Sweet, Hal Blythe, Rusty Carpenter, Eastern Kentucky University  Downloadable

Background

The Provost at Eastern Kentucky University invited Saundra McGuire to speak on metacognition as part of our University’s Provost’s Professional Development Speaker Series. Our unit was tasked with designing related programming both before and after McGuire’s visit.   Our aim was to provide a series of effective workshops that prepared the ground for our university’s Quality Enhancement Plan 2.0 on metacognition as a cross-disciplinary tool for cultivating reading skills. The following mind mapping exercise from one of four workshops was taught to over 50 faculty from across campus and the academic ranks. Feedback rated its popularity high and suggested its appropriateness for any level of any discipline with any size class.

Scientific Rationale

The Mind Map, a term invented by Tony Buzan in The Mind Map Book (1993), “is a powerful graphic technique which provides a universal key to unlocking the potential of the brain” (9). For that reason, Buzan’s subtitle is How to Use Radiant Thinking to Maximize Your Brain’s Untapped Potential. A mind map provides a way for organizing ideas either as they emerge or after the fact. Perhaps the mind map’s greatest strength lies in its appeal to the visual sense.

We chose to share mind mapping with our faculty because according to Brain Rules (2008), rule number ten is “Vision trumps all other senses” (221). For proof, the author, John Medina, cites a key fact: “If information is presented orally, people remember about 10%, tested 72 hours after exposure. That figure goes up to 65% if you add a picture” (234). Because of its visual nature, mind mapping provides a valuable metacognitive tool.

How Mind Mapping Supports Metacognition

Silver (2013) focuses on reflection in general and in particular “the moment of meta in metacognition—that is the moment of standing above or apart from oneself, so to speak, in order to turn one’s attention back upon one’s own mental work” (1). Mind mapping allows thinkers a visual-verbal way to delineate that moment of reflection and in capturing that moment to preserve its structure. Because analysis is one of Bloom’s higher-order learning skills, mind mapping leads to deep thinking, which makes self-regulation easier.

Method

Essentially, a mind map begins with what Gerry Nosich in Learning to Think Things Through (2009) calls a fundamental and powerful concept, “one that can be used to explain or think out a huge body of questions, problems, information, and situations” (105). To create a mind map, place the fundamental and powerful concept (FPC) you wish to explore in the center of a piece of paper and circle it. If at all possible, do something with color or the actual lettering in order to make the FPC even more visual. For instance, if you were to map the major strategies involved in metacognition, metacognition is the FPC, and you might choose to write it as such:

M E T A
Cognition

Increasing the visual effect of the FPC are lines that run to additional circled concepts that support the FPC. These Sputnik-like appendages are what Buzan calls basic ordering ideas, “key concepts within which a host of other concepts can be organized” (p. 84). For example, if you were working with our metacognition example, your lines might radiate out to a host of also-circled metacognitive strategies, such as retrieving, reflection, exam wrappers, growth mindset, and the EIAG process of Event selection-Identification of what happened-Analysis-Generalization of how the present forms future practice (for a fuller explanation see our It Works for Me, Metacognitively, pp. 33-34). And if you wanted to go one step further, you might radiate lines from, for instance, retrieving, to actual retrieving strategies (e.g., flashcards, interleaving, self-quizzing).

Uses for Mind Maps

Mind mapping has many uses for both students and faculty:

  • Notetaking: mind mapping provides an alternative form of notetaking whether for students or professors participating in committee meetings. It can be done before a class session by the professor, during the session by the student, or afterwards as a way of checking whether the fundamental and powerful concept(s) was taught or understood.
  • Studying: instead of rereading notes taken, a method destined for failure, try reorganizing them into a mind map or two. Mind mapping not only offers the visual alternative here, but provides retrieval practice, another metacognitive technique.
  • Assessing: instead of giving a traditional quiz at the start of class or five-minute paper at the end, ask students to produce a mind map of concept X covered in class. This alternative experiment will demonstrate to students a different approach and place another tool in their metacognitive toolbox.
  • Prioritizing: when items are placed in a mind map, something has to occupy center stage. Lesser items are contained in the radii.

Outcomes

Mind maps are easy, deceptively simplistic, fun, and produce a deep learning experience. Don’t believe it? Stop reading now, take out a piece of paper, and mind map what you just read. We’re willing to bet that if you do so, the result will provide a reflection moment.

References

Buzan, T. (1993). The mind map book: How to use radiant thinking to maximize your brain’s untapped potential. New York: Plume Penguin.

McGuire, S. Y., & McGuire, S. (2015). Teach students how to learn: Strategies you can incorporate into any course to improve student metacognition, study skills, and motivation. Sterling, VA: Stylus.

Medina, J. (2008). Brain rules. Seattle: Pear Press.

Nosich, J. (2009). Learning to think things through. Upper Saddle River, NJ: Pearson.

Silver, N. (2013). Reflective pedagogies and the metacognitive turn in college teaching.

In M. Kaplan, N. Silver, D. Lavaque-Manty, & D. Meizlish (Eds.), Using reflection and metacognition to improve student learning (pp. 1-17). Sterling, VA: Stylus.

Sweet, C., Blythe, H., & Carpenter, R. (2016). It Works for Me, Metacognitively. Stillwater, OK: New Forums.

Appendix: How to Use Word to Create a Mind Map

  1. Click Insert.
  2. Click Shapes and select Circle.
  3. Click on desired position, and the circle will appear.
  4. Click on Draw Textbox.
  5. Type desired words in textbox (you may have to enlarge the textbox to accommodate words).
  6. Drag textbox into center of circle.
  7. Repeat as desired.
  8. To connect circles, click Insert Shapes and then Select Line.
  9. Drag Line between circles.

A ‘New Ear’ for Student Writers: Building Awareness of Audience

by Michael Young, Robert Morris University

 Downloadable

Motivation and Background:

A fundamental hurdle for most inexperienced writers is gaining a sense of their audience, and how a different consciousness may interpret the words, the organization, and the presentation that they (the writers) use to share ideas. It is different than knowing rules, techniques, or traditions of writing. It requires more than knowledge of the topic about which they are writing. Writers must be aware of their own individual thinking, their own choices, their motivations, and how these could be interpreted or misinterpreted by other people’s ways of thinking. This need for awareness of their own thoughts that could then support their writing efforts, i.e. metacognitive writing, led me to develop a new pedagogical process for the writing classroom that uses active presentations by others to convey audience interpretation.

I used this process for three years in creative writing courses, partially because students were already pursuing genres that often are interpreted orally, but believe it could be applicable to any writing course, especially with the following course characteristics: 1) upper division/at least sophomore level so the students are already somewhat experienced collegiate writers and 2) class size is small, ideally 20 or fewer students. No special materials, other than imagination and the means to convey ideas, are needed for the in-class exercises.

Nuts and Bolts:

This pedagogical process has several steps. To first prepare the students and get them thinking about how an audience might interpret their work, the students are given an initial survey on their then-current process of writing and concept of their potential audience. Consistently, three out of five agreed that they had a “mental picture” of their reader, but it was often no further developed than their college peers or even themselves. Most could not describe their readers any further and some said they had not considered a concept of a readership. Perhaps, for them, they had written only and ever with the teacher, and so a grade, in mind.

The second step involves having canonical examples of their genre, fiction or poetry, interpreted by others. During this step those others give a presentation / reading of the work in a manner that conveys their interpretation of the writing. Those others can be classmates or a more external audience. For example, the first two years I used this process, the others were members of the Forensics Team from the University of Nebraska-Lincoln, then led by Professor Ann Burnett.

A third step, which has evolved over the years, was to have others present the students’ own writing back to them. This third step was implemented as a cycle. The students wrote their piece (either individually or as a group) and then gave it to others (classmates or external individuals) for interpretation with no additional input from the writers. The presenters would convey their interpretation, which then could be used by the writers to guide their revisions based on a better understanding of possible audience interpretation. If revisions were made, then the cycle of interpretation could be repeated.

Outcomes:

When this was done at the University of Nebraska-Lincoln, in a project funded by a grant from the university’s Teaching Council, 80% of the collaborative groups elected to revise their texts after hearing them interpreted. They noted the experience of hearing their stories being told by someone else, someone who was sharing their own understandings and insights into the words, heightened an awareness of qualities like the “flow and rhythm” of words or of “trying to make a picture in my head”, and an overall greater attention to what their drafts were able to communicate. For example, the potential hollowness of easy clichés might not have occurred to the writers or a lack of descriptions they had had in mind but which were not articulated were now more evident. Further, the majority of the class reported being much more aware of their own thinking (an aspect of metacognition) and the thinking of others.

By hearing, and sometimes seeing by the use of movements, how another person re-created the writer’s intentions, each writer had the opportunity to perceive how their audience understood what had been written down – in a way, to hear their own thinking – and to questions themselves. Is that what they had wanted someone else to feel, to think or had their expression fallen short of their conception? In other words, the process allowed them to “hear it (their work) with a ‘new ear’” and some of them realized they “should have found another way to get that (sic) message across.” That “new ear”, hopefully, was them more carefully listening to and questioning their own thoughts, i.e. being metacognitive about their own writing.


Utilizing a Metacognition Chart for Exam Review and Metacognitive Skill Development

by Dana Melone, Cedar Rapids Kennedy High School

 Downloadable

Motivation and Context:

I teach AP Psychology at a Kennedy High School in Cedar Rapids, Iowa. My students range in age from 15-18 years old. They also come into my classroom with a variety of grade point averages ranging from below a 2.0 to above a 4.0. While some students have excellent, note taking and study skills as well an understanding of what they need to study, I find that most of my students (even the top ones) tend to try to study everything and get overwhelmed. They also do not utilize review time to their advantage.

At the same time my students love review games and in class review time. However, for years I was hesitant to play them or give them time to review in class because they would be so actively engaged in the game or review activity that they would not take the time to consider what they knew and what they did not know, and how this should effect their studying (i.e. practice metacognition about their learning). I wanted to engage them in demonstrations and games but I also wanted them to use those activities to guide their studying and develop effective learning strategies that could be used beyond my course. In response to this dilemma, I developed the metacognitive prompt chart below.

Nuts and Bolts:

In order to help students gauge how much they know, I have started requiring them to complete the metacognitive chart as they are reviewing in class or playing a review game I have also pointed out that they can use the chart even when they are working on current content. The chart consists of 4 columns that help students categorize their understanding of the concepts.

Students use the chart by putting the concept names in the column that best describes their understanding of each concept as we move through review activities or games. There are also two questions at the bottom that ask them about the focus of their studying and patterns they have seen over time. In the end, they have a chart that allows them in one glance to know what they need to study and what they have knowledge of.

  1. What concepts need to be the focus of your studying? How will you make sure you are studying them actively?
  2. Look at your past charts, what concepts seem to remain a problem? How will you address this?

My students have this chart out any time we are going over previously learned content or reviewing (multiple times a week). I encourage my students to re-examine their charts once a week to look for patterns over time and reflect on what they need to get help with or review. I also encourage them to combine any charts as we near assessments that are cumulative. Multiple times a month I collect the sheets and can visibly see areas that all my students are struggling. I have been able to use it for my own personal metacognition in planning review, re-teaching, and remediation times.

Outcomes:

This chart has proven its effectiveness on many levels. Students have been able to visibly see the areas that they need improvement in and should focus on. They are also able to examine these sheets over time to see patterns in the content that they are struggling with and doing well with. An unintended outcome has been the ability to use it as the teacher for ongoing formative assessment of my classes.


Metacognitive Time Capsule Assignments for Reflection on Writing Skills

by Sarah Robinson*, U. S. Air Force Academy
sarah.robinson@usafa.edu

Downloadable

Motivations and Context:

I teach upper level Geoscience courses on Remote Sensing and Imagery Analysis—essentially using satellite imagery to study earth surface materials and processes. In addition to the course objectives on imagery analysis, I also have a course objective on communication. Specifically, I want my students to be able to construct a convincing, clear, and concise written argument that communicates their analysis choices and subsequent results. Using imagery to analyze a geospatial problem is not enough; students also need to be able to write a convincing technical summary that communicates their analysis and results to others.

One of the challenges with communication course goals is that writing is often approached with a fixed mindset (Dweck, 2007), meaning it is viewed as some innate quality that you either have or you don’t. With a fixed mindset, it simply doesn’t make sense to expend effort on writing (ex. write drafts or read feedback) because there is no clear path for improvement—it is a fixed skill regardless of effort. However, if students alternatively view writing with a growth mindset they see writing as a skill that can be improved with practice and use of specific actions/strategies to make progress. Engaging in a growth mindset requires reflection on abilities and progress (self-awareness) and identification of strategies for improvement (self-regulation). In terms of writing, this translates into effort expended on practice in multiple assignments/drafts, reflection on progress and feedback, and identification of strategies to improve future writing assignments. Course design and assignments that promote metacognition through self-awareness and self-regulation can help students develop this growth mindset. Specifically, I incorporate systematic practice, actionable feedback and a time capsule reflection assignment in my course design.

Nuts and Bolts:

Systematic Practice:

Students have 3 lab assignments and a final project where they are asked to analyze geospatial problems using imagery and then summarize their analysis and results in 1-2 paragraphs. Each lab assignment has different geospatial problems, but the writing expectations and format are the same—for each geospatial problem, students write a summary that includes an introduction to the research problem, an explanation of their analysis choices in solving the problem, and an evaluation of their results. By having the same format (but different topic) for each writing assignment, students get systematic practice in writing a convincing, clear, and concise written argument.

Actionable Feedback:

The consistent format and expectations across writing assignments allows me to use the same rubric for every assignment. While the content changes with each assignment, students can reflect on their progress by looking at their rubric scores across the semester. For the first assignment, the rubric is the same, but a multiplier is applied to the score to compensate for their initial lack of familiarity with the format. In addition to rubric scores, I provide comments in the text (students submit electronic copies of their assignments) that provide actionable feedback on how to improve the next submission. Because the comments are relevant to a future assignment, students report that they engage in self-regulation by reading and using the feedback to improve their next assignment.

Metacognitive time capsule assignment

To support student self-awareness of their progress over the semester, I created a time capsule assignment where students compare their writing on the first lab with their writing on the final project. This assignment supports student metacognitive development because it asks students to develop self-awareness by reflecting on the changes they see in their writing. As all of their submissions are digital, students have copies of all their assignments and feedback across the semester. This assignment asks students specific questions to guide their reflection and asks them to provide example text from their assignments to support their statements. I am very clear in class that they receive full credit for participating in the assignment—they are not graded on what is in their answers, only on whether they provided complete answers.

There are two keys to this assignment for effective student reflection: the “time capsule” aspect and the consistent assignment format. Having students preserve and read their actual first writing assignment is critical—this first assignment essentially captures who they were at the beginning of the semester and preserves it, as in a time capsule, to be revealed intact at the end of the semester. The time capsule aspect allows for unfiltered, direct comparison by students of their skills then vs. their skills now that is not overwritten by their experiences during the semester.

The other key component is having a consistent assignment format to make comparison easier. This assignment would not have worked as well if students were comparing writing assignments that had very different formats or expectations. By keeping the format/expectations consistent, students are better able to see and explain their progress.

Outcomes:

I had trepidations about giving this time capsule assignment the first time I used it—I honestly didn’t know how students would respond. I was pleasantly surprised to see how engaged they were—instead of just writing their answers during class time, they were sharing with each other their comparisons between their first paragraphs and what they were then able to write for their final project. Their written answers documented their reflection on the changes they saw in their technical writing skills (self-awareness) and identified writing habits that they could continue/change in future classes (self-regulation).

Lessons Learned and future directions:

This type of time capsule assignment is something that I will continue to build into my courses. The planning required to design a consistent format and preserve early assignments is a small cost for the benefits of having students develop self-awareness and self-regulation and supporting a growth mindset.

Reference

Dweck, Carol S. (2007). “Mindset: The New Psychology of Success.” New York: Ballantine Books.

* Disclaimer: The views expressed in this document are those of the authors and do not reflect the official policy or position of the U. S. Air Force, Department of Defense, or the U. S. Govt.


Practicing Metacognitive Instruction Informs Continuous Class Improvement While Reinforcing Student Self-Awareness of Learning

by Lara Watkins (Bridgewater State University
lwatkins@bridgew.edu)

 Downloadable

Motivations and background:

I have been teaching a course titled “Anthropology of race, class and gender” for about five years at a state university. As a course that covers requirements for the core curriculum as well as for anthropology majors, the student population is diverse with first year through final semester students including both majors and non-majors. The course is taught in person with about 25 students per section.

I implemented a series of mid-course reflections for a variety of reasons. (1) I sought to encourage students to reflect upon their learning in the course as a way of helping them to recognize and assess their own learning over time, while (2) simultaneously providing an indicator of the main messages being retained by students to help in course planning for the future. The reflection served as a low stakes evaluation of learning, which then fed into continuous course improvement. Pragmatically, I was interested in (3) if there were specific barriers to student comprehension of the material that might make a substitute reading or focused classroom interventions appropriate. Since student metacognition about their learning can inform metacognitive instruction, I also sought (4) to assess the degree to which students saw value in a particular reading and (5) could link it to other course materials and their own learning, thereby encouraging learning across multiple levels of Bloom’s Taxonomy (Krathwohl, 2002).

Nuts and Bolts / Procedure:

Each semester, I incorporate four in-class, mid-course reflections. Students completed each pen-and-paper reflection in about five minutes. They had the option of handing in the reflection anonymously or adding their name to the form. Each mid-course reflection was about 3-5 questions long. The first question always asks students to state a few key points that they have learned in that particular section of the course, while the last question always provides students a place to anonymously raise questions and concerns. The middle questions vary depending on my evolving concerns or interests.

The middle questions on the reflection example shared here focused on the use of a full-length book; however, in general, the middle questions focus on a specific aspect of that portion of the course (e.g. a reading, the use of an online learning tool, etc.), that obviously is assigned to deepen learning, but through which student experiences could provide insight on the degree to which there are barriers to this ultimate goal. My goal in this particular example was to find out if students were engaged in the reading, if they were taking away the main ideas, and if there were noted challenges that could be mitigated in future iterations of the course.

Outcomes and Lessons Learned:

  • The first question (which asked for students to summarize what they had learned across a few weeks of the course) provides a useful snapshot of the main messages interpreted and retained by students. Through assessing student summary of information in question one, I have found that students were not able to reiterate key points to the same degree across different portions of the course, thereby suggesting which particular section(s) of the course needed further elaboration and attention in later semesters.
  • For this particular reflection example, I found that the students’ perspectives of the book did not align with my anticipation of their perspective. (The students were more positive than I expected.) Checking in with students throughout the semester helps to give the instructor a tangible and direct indicator of student interpretations of the course and course materials. This can feed into continuous course improvement.
  • This course meets twice a week on Mondays and Wednesdays. A key lesson learned from the student feedback is that they need lengthier readings to be due on the Monday. While this might appear intuitive, instructors sometimes lose sight of student logistics when constructing their syllabi and the multitude of topics to be covered. It also highlights the need to build in multiple, explicit reminders for students to start lengthy readings in advance.
  • Instructors implementing a similar activity in class will want to consider the benefits and drawbacks to allowing for anonymous submission. I chose for the feedback to be anonymous by default so that students would feel comfortable sharing their honest assessments and could clearly let me know if they had not completed the reading without feeling that it would impair their grade in any way. If instructors would like to track progress over time for individual students, then they may desire to have students identify themselves.   I have found it appropriate to individually email students who identify their name and raise a specific question/concern. Students often express gratitude for the personal outreach as it directly addresses a question or concern that they have, thereby decreasing their perceived barriers to success, and it conveys respect and concern for their individual learning trajectory, thereby cultivating a supportive learning climate.

This reflective approach provides a series of quick and useful indicators of student learning that I can use as an instructor to adjust my teaching and better support my students’ learning. A second benefit is that they help center the students’ attention on the metacognitive and higher-order processes of remembering, connecting, analyzing, and evaluating course concepts. Providing short assessments like this at a few time points across the semester is an easy way to “take the pulse” of a particular class and then use that feedback to identify teaching practices that are working well and those that might need to be tweaked. Metacognitive instruction leads to continuous course improvement and, ultimately, to better facilitation of student learning.

Reference

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into Practice, 41, 212-218. http://dx.doi.org/10.1207/s15430421tip4104_2


Promoting Metacognition with Retrieval Practice in Five Ateps

by Blake Harvard, James Clemens High School

 Downloadable

 

Motivation for Activity

I am very lucky to work at a high school with students who are quite focused and, from the standpoint of intelligence, very gifted.   This does not make them great learners though. I realize a lot of my students clearly benefit from being able to memorize information. This may work in high school, where assessments are given sometimes daily. In college, however, this will not work. Assessment of material may consist of a midterm and a final. As a teacher who wants to better prepare my students for a lifetime of learning, I am motivated to introduce and cultivate learning strategies that focus on this personal growth and better understanding of their own learning through specific exercises promoting metacognition.

Context for Activity

I use this activity with my high school AP Psychology classes. These classes average about 30 students. Although my situation is quite specific, I believe this activity can easily be accommodated to fit most class sizes in almost all disciplines of study.

Description of Activity

Let me put all the cards out on the table: I am a big believer in using researched/proven learning strategies promoting metacognition to improve retention of classroom material. I have applied strategies in my high school Advanced Placement Psychology classes and seen notable improvements in three areas:

  • Test scores
  • Study habits
  • Student’s understanding of their learning

Improvement in test scores is important for many reasons and ultimately describes an overall level of understanding.  While I am thrilled to see my mean test score increase and standard deviation shrink a bit, that is not what I’m most excited about when lauding learning strategies.  I am far happier with the student growth with respect to their study habits and metacognition about their learning.  While I instruct highly intelligent adolescents, most of my students do not enter my room as great learners.  They are merely great memorizers.  There’s nothing inherently wrong with that, but it becomes much more difficult to just memorize your way through college and most of my students (80% to 90%) will attend university.

In particular, one learning strategy that I believe to be the most effective is retrieval practice.  The Learning Scientists provide a great overview of the strategy.  Basically, the idea is to attempt to retrieve information from your memory a bit after it’s been presented to you.  This can be done minutes, hours, or days later, and can be seen in many forms:  multiple-choice or matching questions, essays,. I have written before on the topic of retrieval practice and its impact on my classroom.  Today, I want to focus on how I promote metacognition through the use of retrieval practice in my classroom.

Usually the day after a lesson, I use these steps to practice retrieval of the information:

  1. Provide questions or a prompt.  Since I am preparing my students for an AP exam in May, I usually provide AP style questions (no more than 7). By ‘AP style’, I mean, either multiple-choice questions with five possible answers or an essay prompt requiring students use terms or concepts from the previous lesson to successfully relate their knowledge to a given scenario.
  2. Answer using only their brain.  This step starts to break their habit of asking those around them for help or looking at their notes/the internet for assistance.  In my opinion, this step is the most important aspect of retrieval practice.  They are forced to attempt to retrieve material as they practice answering test questions, which is the process in which they will have to engage during the actual test. A second benefit is that this practice can help to reduce test anxiety.  A lot of students shy away from this step because it can be difficult or because it highlights flaws in their learning, but I tell my students it’s definitely better to struggle with the material now than on the test.  If the test is the first time a student is presented with material in a way that utilizes the use of retrieval practice, we’ve all probably failed.
  3. Evaluate their answers.  How many answers are they very confident with?  How many answers are simply guesses?  I want students to understand that if they just guessed and answered correctly, they still don’t know the answer, they just got lucky.  Sometimes I’ll have my students delineate, by using a different color pen on their paper, answers they are confident with and those they are not.  This helps them to visualize their pre-grade understanding.
  4. Compare/contrast answers with neighbors.  I instruct the students to have a conversation; debate any discrepancies.  At this point, if they can thoughtfully discuss answers they probably have a decent grasp of the information and have taken time to reflect on their learning; specifically where their may be holes in their learning of the material or with what they thought they knew, but may have been mislead.
  5. Grade their paper.  After students grade their paper I want them thinking about the following questions that really allow the students to practice their metacognition and regulate/reinforce their study habits for future practice.

a. Does my grade reflect my knowledge?

b. Am I happy with my grade?

c. If no to either of the above questions, what strategies can I utilize to successfully retain the material?  At this point, many students incorrectly believe that their understanding of material is complete…for better or worse.  You can almost see them thinking either “Oh well, I just don’t know this” or “I scored well, I must know this”.  I attempt to impress upon my students that use of other strategies, like spaced practice and dual coding, will further aid to improve and solidify retention of the material.

d. If yes to the above questions, I ask students to reflect on what work they put in to remember this material so they can plan to use that strategy again for future learning. This step also helps reinforce that they should focus on learning strategies, not just guessing / luck.

Reflection

After many semesters of working with students, I have come to believe that metacognition and reflection on study habits/strategies is of foundational importance.  One of the goals I have for the students in my class, over the course of a semester, is these learning strategies become their norm for studying.  It’s not something extra, it is what they do to practice and learn.  Without the reflection piece of using retrieval practice and other learning strategies, it is hard for high school students to examine their study/practice growth. While walking the students through these five steps may seem a little laborious, the explicitness of the instructions seems to work well to increase their awareness of their own learning shape their behaviors toward more effective practices.

It is often quite difficult to convince teenagers their study/practice habits, that usually rely on simple memorization, will more than likely not be successful at college.  They need to see results from their added efforts.  Using these five steps, I have witnessed student’s grades improve and study/practice habits change for the better.  As a teacher, I’m not sure it gets any better…improving a student’s learning and making them more successful.  It’s why we get paid the big bucks.  🙂

References

Learn How to Study Using…Retrieval Practice, The Learning Scientists, www.learningscientists.org

Retrieval Practice in the High School Classroom, The Effortful Educator, www.effortfuleducator.com

Learn How to Study Using…Spaced Practice, The Learning Scientists, www.learningscientists.org

Learn How to Study Using…Dual Coding, The Learning Scientists, www.learningscientists.org


A Project-Based Method to Help Students Practice Study Strategies in an Authentic Context

by Hillary Steiner, Kennesaw State University

 Downloadable

Motivations and Context: Success in college requires the development of self-regulated learning strategies that move beyond high school skills, but teaching these strategies can be challenging. I teach a first-year seminar at a large comprehensive university that includes helping students develop college-level studying and time management skills among its goals. Knowing that students would be more likely to value these skills (and later, transfer these skills) if they were situated in context, I developed an assignment that requires students to practice self-regulated learning strategies—active reading, management of study time and achievement goals, proactive interaction with faculty, metacognitive reflection, and more—within the context of a student-selected course.

Assignment: In the Strategy Project assignment, students learn time management, communication, and study strategies in the process of preparing for an actual test. Students then demonstrate that learning by submitting their test preparation activities as part of a graded project in the first-year seminar.

First, students choose a test in another course that they find challenging. Then, they complete a contract, in consultation with their first-year seminar instructor, that indicates their individualized due dates and studying plans based on their chosen test. Students also write a pre-project reflection paper discussing their current approaches to studying and time management.

Next, the students complete a “professor interaction” activity where they visit the instructor of the chosen course to discuss a previous test or quiz, if applicable, and ask for advice about achieving success in that particular course. This portion of the project helps first-year students become comfortable interacting with their instructors and reinforces help-seeking behaviors. After this meeting, students develop a plan of study that outlines the strategies they will use to study for the test. This activity encourages effective time management and allows students to experience the benefit of study time that is distributed over several days.

Finally, the largest portion of the project requires students to complete a variety of metacognitive strategies such as textbook annotation, self-quizzing, concept-mapping, etc. Providing choices in strategies allows students to demonstrate metacognition by effectively matching studying techniques to their chosen test. After the test is graded and returned, students again complete a metacognitive reflection on the outcome of their studying habits in a short informal paper and presentation to the class.

Outcomes: For a number of years, I have studied the Strategy Project as a method for students to practice metacognition in an authentic, valuable context. I have used the project as a component in STEM learning communities that paired a first-year seminar with first-year STEM courses (e.g., Steiner, Dean, Foote, & Goldfine, 2016) as well as stand-alone first-year seminars (e.g., Steiner, 2016; 2017). Results from these studies have indicated that the project did raise awareness of, and encourage the use of, beneficial metacognitive strategies, and for most students, also increased their test scores in the chosen courses. One study’s preliminary findings (Steiner, 2017) also show a gain in self-reported metacognitive behaviors as measured by the Motivated Strategies for Learning Questionnaire (Pintrich, Smith, Garcia, & McKeachie, 1993). Anecdotally, students tell me that the Strategy Project was a powerful motivator to change high school habits that had become ineffective. Many students say that although they realized their strategies needed to change, without the incentive of a graded project, they would not have committed to changing their approaches. Students also have responded positively to learning more about metacognition in my first-year seminar (Steiner, 2014), suggesting that metacognition may be an important topic for others to address in similar seminars or “learning-to-learn” courses.

Lessons Learned and Future Directions: I continue to revise the Strategy Project yearly as I learn more from my students about its efficacy. To date, I mostly have used the Strategy Project in my own classroom. However, a colleague and I are planning a large-scale study of the Strategy Project which will compare the metacognitive gains made by students in sections of the first-year seminar that include the project versus those that do not. Because many faculty who teach the first-year seminar do not have a background in educational psychology, we will include professional development on metacognition and memory as part of the training. I look forward to continuing to revise the Strategy Project in light of others’ experiences using it. I would appreciate any feedback you or your students have on the effectiveness of this assignment in your own classroom.

References

Pintrich, P.R., Smith, D.A., Garcia, T., & McKeachie, W.J. (1993). Reliability and predictive validity of the Motivated for Learning Strategies Questionnaire (MSLQ). Education and Psychological Measurement, 53 (3), 801-814.

Steiner, H.H. (2017, March). Using a strategy project to promote self-regulated learning. Paper presented at the SoTL Commons Conference, Savannah, GA.

Steiner, H.H. (2016). The strategy project: Promoting self-regulated learning through an authentic assignment. International Journal of Teaching and Learning in Higher Education, 28 (2), 271-282.

Steiner, H.H.; Dean, M. L.; Foote, S.M; & Goldfine, R.A. (2016). The targeted learning community: A comprehensive approach to promoting the success of first-year students in general chemistry. In L.C. Schmidt & J. Graziano (Eds.), Building synergy for high-impact educational initiatives: First-year seminars and learning communities. Columbia, SC: National Resource Center.

Steiner, H.H. (2014). Teaching principles from cognitive psychology in the first-year seminar. E-Source for College Transitions, 11 (2), 14-16.


Metacognitive Reflection Assignments in Introductory Psychology

by Dennis Carpenter, University of Wisconsin-Colleges

 Downloadable

Motivations and context: These assignments focus on study strategies, goal setting, and reflection on the effectiveness of study strategies and the extent to which goals have been achieved. These assignments are used in Introductory Psychology courses at UW Richland, one of fourteen UW Colleges open-enrollment freshmen-sophomore liberal arts campuses throughout Wisconsin. These classes typically enroll 15-35 students in each of two sections per semester. A diverse range of students take these classes from varying ethnic/racial/language backgrounds and levels of academic preparation. Many students struggle with basic academic and study skills. Such skills have been emphasized in these courses over the 16 years I have taught in the UW Colleges and the present metacognitive reflection assignments represent an evolution of this work.

Nuts and Bolts: The materials included represent a series of three assignments used in the Spring 2017 semester. These assignments vary across semesters based on the students, information I encounter in my reading, and my own reflection on their impact in previous semesters. This series of assignments is introduced at the beginning of the semester. For new students, this occurs within the context of discussing ways that college might be different from high school in demands and strategies required for success. For continuing students, this occurs within a discussion about student perceptions of what is required for success in college based on their own experiences. The course textbook includes personal application sections (Improving Academic Performance and Improving Everyday Memory) that are assigned as part of the first week’s readings (Weiten , 2017, pp. 23-25, 252-255). Sternberg (2016) provides an excellent overview of evidence-based effective study strategies and tips for success. This was used for the first time in the Spring 2017 semester as a supplement to Weiten (2017).

In the first assignment, students are encouraged to write about study strategies they intend to use in the course as well as goals for the first unit of the course concluding with the first of four exams. The first assignment is graded very quickly with feedback given to students within a week of submission. In-class feedback typically includes a focus on writing goals in more clear and specific ways so they are attainable. Online worksheets are readily available for helping students write SMART goals and can be helpful at any stage in this sequence of assignments. The second assignment is due a week after the first exam. At that time, students reflect on their exam performance and the effectiveness of their study strategies as well as the extent to which they met their goals. Students are encouraged to refine their strategies and goals for the second unit based on the outcome of the first exam, having a better idea of what is required in the course, and greater insight into their own learning processes. The third assignment is due a week after the second exam. Again, students are asked to reflect on their exam performance, the effectiveness of their study strategies, and the extent to which they met their goals. Students are also encouraged to narrow their focus for this assignment and discuss two main strategies or goals they intend to focus on for the rest of the semester. Over the years, students have appeared to increasingly struggle with focused study given the multitasking demands of their electronic devices. For this reason, the third and final assignment also includes a reading about unplugging from devices and regaining control of one’s life (Weir, 2017), and questions about student experiences related to points made in this article.

Outcomes: I have witnessed students making significant changes in their approach to academic work with improvements in course performance over the semester. Unfortunately, many students have not seemed to benefit from such intervention, at least during the semester taking this course or in ways visible to me. Goal setting and evaluation routinely emerge as significant challenges for students. Distributed practice, self-testing, and minimizing distractions represent some of the more common strategies students report being successfully used. Improved management of electronic devices while studying has been one of the most significant outcomes for students revealed in these assignments.

Lessons learned and future directions:   I intentionally front-load these assignments to have maximum benefit. Students have perceived such assignments to be redundant when done after every exam in the past. In the future, I plan to re-introduce an end-of-the-semester reflection to better gauge the impact of these assignments. The student writing in these assignments provides a basis for one-on-one conversations with students about improving academic performance during office meetings. The positive impact of these assignments could be enhanced by structuring ways to have more follow-up conversations with students about their preferred study strategies and learning goals. I highly encourage integration of strategies for improving relationships with devices in any material on study strategies and metacognition. I welcome your feedback about how I might improve these attempts to improve student metacognition and look forward to learning more about your attempts to do so.

Readings Provided to Students

Sternberg, R. J. (2016). Introduction to optimizing learning in college: Tips from cognitive psychology. Perspectives on Psychological Science, 11(5), 642-660.

Weir, K. (2017, March). (Dis)connected. Monitor on Psychology, 48(3), 42-48.

Weiten, W. (2017). Psychology themes and variations (10th ed). Boston, MA: Cengage.

Grading rubrics: Rubric 1, Rubric 2, Rubric 3

 


The Promotion of Metacognition Through Soft Skills

by Mary Hebert, Fairleigh Dickinson University

 Downloadable

Description of Activity:

I teach a course in Metacognitive Strategies which focuses on the social and emotional components to academic success. These are referred to as ‘soft skills’ (emotional intelligence, interpersonal and intrapersonal awareness, emotional regulation, problem solving etc.) The course is presented to students who are members of the Regional Center at FDU who have been diagnosed with a language-based learning disability and or ADHD/ADD. Weekly journal reflections are completed based on a prompt that reflects a soft skill that is being addressed in the lecture. These journal entries serve as a means of enhancing metacognition and reflection of the material and focus on strategies of incorporating the skill into practice of academic performance.

An additional element involves a final project which requires the students to identify an individual they have admired for their successful accomplishment of some specific achievement. They are required to interview this individual and discover the soft skills associated with their accomplishment, not the ‘hard skills’ which are traditionally aligned with success (GPA, School Attended, Titles achieved etc). Furthermore, the student specifically is asked to assess their own soft skill set, including areas that are strengths and those to develop, and implement a plan of incorporating these into their academic goals and pursuits.

Further details of the activities can be found here.

Motivation and Context:

The class is designed to explore the ‘soft skills’, which include the social and emotional skills that are associated with academic success. The assignments are designed to provide tangible exercises that, when explored in a metacognitive manner and applied purposefully with a plan, can result in success and improve the academic and career course of an individual. The goal is improved self-regulation and critical thinking in regard to specific social and emotional skills that are highly correlated with academic success.

Nuts and Bolts:

The specific intent of this course and its assigned exercises is to weave an academic experience with the content of metacognition and soft skills that are connected to academic and career success. Specific topics addressed include emotional intelligence, personal responsibility, grit, self-motivation, interdependence, active listening, self-awareness, life-long learning, motivation, growth mindset, and goal setting. Students participate in discussion, reflection exercises, and the final project requiring them to take the knowledge of soft skills presented in class, think critically and analyze these topics, and implement them by carrying out an interview and create a presentation. The final project of interview and presentation is a culmination of analyzing a ‘story of success’ that from a distance may have looked easily attained for the interviewee. The task is for the student to discover through inquiry about soft skills, how in fact these played a critical role in the successful outcome for the interviewee. The students acquire insight into the ‘reality’ of the achievement, reflect on the soft skills they have developed and ones that they would benefit from developing further. A key feature is working on the plans of implementation which demonstrates improved critical thinking and capacity for self-regulation of good decision making and goal attainment.

The result is metacognitive ‘boot camp’ in regard to the less frequented content in the classroom that are key to academic effectiveness. Metacognition has been associated with improved critical thinking skills (Magno, 2010). Students are given knowledge about soft skills, asked to discuss through oral and written means of reflection, and then take it a step further and asked to apply the concepts to their own academic tasks throughout the semester. This sequence of knowledge acquisition, analysis, and application are the nuts and bolts of weaving the material together.

Outcomes:

The highly interactive nature of the course forces the contemplation necessary for students to adopt a more metacognitive approach to learning and their goals beyond the classroom. Critical thinking and self -regulation related to the connection between soft skill development and their academic and learning capacity is improved. As a counselor within the program that serves the students, I meet with each student individually one time per week during their freshmen year. I have observed that students begin to synthesize the course material with their academic functioning and improve their approach to matters related to their courses, studying, and academic goals. Many students begin to consider options to their approach in regard to their broader education and learning environment.

The culminating final project results in enhanced awareness of the interdependent nature of soft skills and hard skills for overall success in learning and career effectiveness. Presentations have been extraordinarily diverse with students choosing political figures, doctors, artists, students, business people, professors, peers, parents, coaches etc. Each year the series of presentations showcases the synthesis of soft skills and how growing awareness and purposeful use of these optimizes success academically as well as in career endeavors. Students demonstrate through their writing and oral reflection of their own use of soft skills, goals of further developing targeted soft skills during college to assist them in achieving academic success as well as future career success.

Lessons Learned and Future Directions:

The literature is clear in support of the importance of soft skills both in the classroom and in life. While some time during the course is spent connecting the material to career endeavors, future directions might include more of this element. In addition, it would be worthy to have a ‘maintenance program’ that extends beyond the time of the course, so that as the freshmen students progress, they are provided with opportunities to review and integrate the soft skill concepts throughout their remaining years of their college experience.

As a higher order thinking strategy, metacognition offers the opportunity to enhance and tap into the potential of the brain power within each student. Greater flexibility and awareness in thinking is the outcome and the continued goal of this form of application of metacognition.

Reference

Magno, C. Metacognition Learning (2010) 5: 137. doi:10.1007/s11409-010-9054-4


Metacognitive Reading Boosts Philosophy Exam Scores

by John Draeger, SUNY Buffalo State

 Downloadable

Motivations and context

I teach philosophy at a state university with approximately 10,000 undergraduates. I started incorporating the following metacognitive reading activity in order to promote the deep thinking and synthesis that students often struggle with on my essay exams. The bulk of my teaching falls within the general education curriculum where I help students develop help students develop critical skills (e.g.,close reading, careful writing, critical thinking) as well as expose them them to big concepts. I want students to see that topical topical debates over abortion, euthanasia, and hate speech often boil down to similar big conceptual issues (e.g., how to balance individual liberty against government intrusion, how to assess the benefits of individual expression against the harm to others). My exam questions typically ask students to consider the views of three authors across topical debates (e.g., one writing on abortion, one on euthanasia, one on hate speech) and then discuss which two authors are most alike and which are most different. Some students are stuck almost immediately because they have a hard time seeing how the conceptual issues could be at all alike when the topical issues are so different. These students resort to summarizing the authors. Some students can begin to see the underlying conceptual connections, but they often have difficulty developing those ideas. Both groups of students are left wondering how they could earn full credit on the exam.

Nuts and bolts

I’ve started asking students a series of questions that help make their thoughts about the writings and their own thinking about the writings more explicit, ultimately supporting their synthesis of the different authors and concepts for the exams. In order to prevent these questions from being interpreted as busy work, I introduce metacognition on the first day class. I explain that I want them to learn how to learn, and the writing assignments will help them figure out how to develop the type of thinking required for this course.

The questions fall into three categories. The first category alerts students to importance of having a reading strategy and being engaged.The second category pushes students beyond mere identification of an author’s thesis towards identifying the underlying issues. The third category prompts students to reflect on how the reading led to their identification of the underlying issues. This last category is the most metacognitively focused and important for helping them synthesize their understanding.

  1. General — what was the most challenging part of the reading? What was the most useful part? What was your reading strategy? How might you approach the reading differently next time?
  2. Conceptual issues — what was the central issue in the reading? How are the central conceptual issues related to the author’s thesis? How does this author frame the central issue compared to the other? How might this author respond to the previous author?
  3. Putting it altogether — what is a passage in the reading that illustrates the underlying issue? What is the evidence that the author takes this issue to be central? What is your strategy for uncovering these issues? How would you know if you’re correct? How would you change your approach if you’re not).

Because I want my students to be on a “steady diet” of metacognitive reflection, students are asked at least one question from each of the three categories as part of their preparation for each lesson. Responses to each question tend to be approximately a paragraph in length, and and they are graded pass/fail. Grades are determined less by the accuracy of the content, but by whether they made a “good faith” effort, which reduces the grading load.

Outcomes

Because students are required to explicitly practice with sort of thinking at the heart of the course, students are in a position to engage their own learning, which enables them to monitor their progress and make adjustments as necessary (e.g., ask questions in class, adapt reading strategies, attend office hours). When it comes time for the exam, students are better prepared for the type of thinking they are required to display and express much less confusion about what is being asked of them. As I grade the exams I am pleased to observe that many fewer of them resort to simply summarizing authors and they at least attempt to engage in the required type of thinking.

Lesson learned and future directions

Prior to this metacognitive activity, I thought that I was being clear about the type of thinking that I required of students, and I thought they were receiving plenty of opportunities to practice during class discussion. Even with this activity, however, I believe I need to provide students with more opportunities to become explicitly aware of their thinking and how to modify their strategies to achieve success.


Encouraging Metacognition in the Advanced Physics Lab

by Melissa Eblen-Zayas, Carleton College  Downloadable

 

Description of activity:

I have incorporated metacognitive support activities in the form of written reflections and class discussions to help students develop better approaches to dealing with challenges that arise in open-ended experimental work in an advanced lab course in physics.

Motivations and context:

The advanced lab course is the third of three required intermediate/advanced courses for the physics major that has a significant lab component. This course typically enrolls 18-24 physics majors, and the labs are significantly less scripted than the other required lab courses. The laboratory activities consist of three two-week-long, instructor-designed labs and four weeks of students carrying out an experimental project of their own design.

While some students welcome the move to more open-ended laboratory work, others struggle. Some students are reluctant to take initiative; rather than trying to problem solve on their own, they seek help from course instructors as soon as problems arise. Other students have difficulty developing a strategic approach to troubleshoot the challenges they encounter. To encourage independence in the lab, I have introduced reflection prompts to support student metacognition. Encouraging students to reflect on how they approach challenges and how they will do things differently going forward helps students develop more thoughtful problem-solving approaches in open-ended laboratory work, thereby increasing self-sufficiency and reducing frustration.

Nuts and bolts:

One of the four course goals for the advanced lab course is that students will demonstrate the ability to be reflective on the practice of experimental physics. I introduce the importance of reflective practice on the first day of course, and incorporate reflection activities in both the two-week instructor-designed labs and throughout the final project. These reflection activities account for 10% of the course grade, and most of these reflection activities are graded using a rubric.

1. First day of class. Prior to the first class, I ask students to respond to the prompt: “In two sentences, describe your definition of a successful experiment.” Then I select a number of student statements and share them the first day of class. Although student definitions of a successful experiment vary widely, many responses fall into one of two categories; a successful experiment is a) an experiment that gives a result that is in agreement with what is expected, or b) an experiment in which the experimenter learns something (maybe not what they intended). We discuss these two definitions of successful experiments, and I encourage students to adjust their expectations and appreciate that learning from things that go wrong is still a “success” in the experimental realm. These conversations allow me to introduce the importance of metacognition and the course goal of helping students become reflective practitioners.

2. Reflections on the instructor-designed labs. At the end of every two-week instructor-designed lab activity, I ask students to reflect on their most recent lab and respond to five questions designed to foster metacognition:

  1. Tell me a bit about how you approached the lab.
  2. When you ran into problems, what was the strategy your group employed for troubleshooting the problems you encountered?
  3. What types of pre-reading or additional research did you do to prepare for this lab?
  4. When you asked for help, who did you seek help from (other members of your group, other groups, your lab assistant, your instructor) and what kinds of questions did you ask?
  5. What is one thing that you will do differently when tackling labs going forward?

Students write individual responses to these prompts, and I provide feedback using the rubric. When I first began using these reflective prompts, I did not grade them. Grading the responses has increased the quality and depth of the reflections.

3. Reflections on the final project. I ask students to reflect on their final project work throughout the course of the project. Here is a sample of the questions used:

  1. What did you learn from the process of identifying and refining your final project proposal? What are you most looking forward to and what do you anticipate the biggest challenge will be as you begin working on your final project?
  2. What aspect of your contributions to the final project demonstrates your strengths and talents and why?
  3. What is one significant problem that your group encountered when working on your project in the past week, and how did you overcome it or redesign your project to work around it?
  4. What are your main project goals for the coming week, and how do you plan to pursue those goals?

The format for the responses has varied over the years. Sometimes lab groups respond to one of these prompts during a short oral report to the whole class. Other times, students write individual responses. Still other times, one of these questions serves as the starting point for an in-class discussion. I have found benefits and drawbacks to each of these approaches, and I continue to experiment with the format.

Outcomes:

Including metacognitive support activities in the advanced lab course, being explicit about why reflection is important in experimental physics, and grading student reflective responses has had a positive impact on the quality of student reflections and student attitudes towards the course. Students develop a more self-sufficient approach to tackling challenges that they encounter in the lab, and frustration is reduced. I reported some of the outcomes in a paper presented at the 2016 Physics Education Research Conference. That paper has been published in the conference proceedings:

Eblen-Zayas, M. (2016). The impact of metacognitive activities on student attitudes towards experimental physics, In D. L. Jones, L. Ding, & A. Traxler (Eds). 2016 PERC Proceedings, 104, doi:10.1119/perc.2016.pr.021


Addressing Metacognition Deficits in First Semester Calculus Students: Getting Students to Effectively Self-Evaluate their Understanding

by Derek Martinez, University of New Mexico

 Downloadable

Motivations and context: 

The problem I chose to tackle as a UNM Teaching Fellow was to develop methods for how to teach first semester calculus students to effectively self-test and develop metacognitive skills. One of the biggest issues I have seen over the years is students thinking they understand the material, getting over confident, and then performing horribly on an exam. The practices described below were carried out during the spring 2016 semester in two math 162 (Calculus I) classes.

Method: The two main ways that metacognitive strategies were incorporated into the curriculum were (1) daily “Test Yourself” exercises and (2) exam skills check self-assessments (essentially practice tests) before each exam. The “Test Yourself ” exercises were designed to be a daily reminder to the students that they should not confuse the ability to follow a lecture with the ability to solve a problem on their own. The purpose of the self-assessments was to help students identify where they had gaps in their understanding before taking each exam.

The “Test Yourself” exercises (example attached) were e-mailed to students the night before the lecture and were designed to give students a way to assess whether or not they understood the fundamental concepts of the lecture the following day. For example, if the lecture that day was about rates of change applications, the exercise would focus on an easy-to-medium level example that would test whether or not the students got the fundamental concepts from the section before going on and trying the more challenging homework problems.

Sending the exercises out the night before was effective in getting many students to read ahead in the text, and try to solve parts of the exercises (this was especially true of students who were struggling, or had math anxiety). If a student had solved the exercise before class, they were instructed to bring in a blank exercise and make sure they could duplicate their results without notes. The format for each class was usually lecture for about 40 minutes and then students would work on these exercises (some in groups, some by themselves).

The self-assessments (example attached) were given about five days before each exam. Participation in this was voluntary. I reserved a room outside of class and students took this like an actual exam. I made it clear to the students that the material on these assessments covered the fundamental ideas and basic examples, but were at a lower level of difficulty than the actual exams. The reasoning behind this was to help students pinpoint what core skills they still needed to work on. I graded these assessments just like exams so students could get feedback on their work as well as use of proper notation. To help identify their level of metacognition, at the end of each assessment the students were asked to rank their performance on a scale of 1-5 (5 being best performance). In many cases this ranking followed by actual exam scores provided further evidence to the students that they tended to be overconfident in their preparedness and needed to study more. In the beginning, students tended to over rank their performance but by the final exam assessment, their rankings were more in line with their performance.

Outcomes: Students in my spring 2016 sections had a final exam pass rate of more than 11% higher than all other sections (group graded without me to avoid any possible bias). These students also had a higher final exam pass rate than my fall/spring 2015 students by about 10% (when I did not yet incorporate these activities). The self-assessments seemed to have the biggest measurable impact on student success, as students who took them consistently outscored those who did not by 10 – 20% on the exams. Further, scores on the actual exams were 15 – 65% higher than on the self-assessments. I believe this was due to the fact that they guided and motivated their learning as well as simply scared some students into studying harder.

Lessons learned: “Buy-in” from the beginning is essential. Sharing the data with the students after the first assessment significantly increased the number of students taking the remaining assessments. These were mainly STEM majors so the statistical evidence went a long way with them. It was also crucial to make time throughout the semester to talk about what metacognition is and remind the students why they were doing these exercises.


Weekly Status Reports to Promote Awareness

by David Woods and Beth Dietz, Miami University

 Downloadable

Motivation for the activity or process: Teaching an introductory Information Technology (IT) course involves several goals that focus on creating metacognitive awareness and cognitive monitoring (Flavell, 1979; Schraw, 1998). The main goal of the course is to introduce students to several IT topics (e.g., data representations, computer architecture, and assembly language) that are foundational to the IT curriculum. Other goals of the course include analyzing and solving problems using a computer programming language, as well as applying written and oral communication skills to IT. Teaching these skills also helps address misconceptions about what IT professionals actually do. Students are often surprised to learn that IT professionals usually work in teams for specific projects or on an ongoing basis. Status reports are a key communication tool for groups, and good status reports require the individual to reflect and analyze what they have done, and plan for the future. Considering the course as a project, the status report should prompt the planning and evaluation aspects of metacognitive regulation (Flavell, 1979).

Context: A metacognitive-awareness activity was used in an introductory IT course. The course is a 100-level course and is one of the first courses taken by students considering a major in Computer and Information Technology. Typically, the class size is 20 – 25 students. While the instructor was only in his second year of full time teaching, he also had over 15 years experience working as an IT professional.

Description of activity: Weekly status reports are common activities in many IT positions, especially when an individual is part of a larger project team. They are a basic way for an employee to document what they have accomplished and what they are currently working on. This is valuable in the IT field since work such as writing software or configuring a server does not produce physical objects that provide visual evidence of progress.

The requirements for the status report were simple and made use of several metacognitive processes (Fogerty, 1994). Students were asked to discuss three specific items:

  • Current week activity: List the main course related activities since the last status report and provide a brief discussion of each along with the amount of time spent on the activity. This prompts the student to evaluate their learning from the past week.
  • Upcoming activity: List major course related activities planned for the next week with a brief discussion of the activity and what will be completed during the week. This prompts the student to plan the learning for the next week.
  • Issues and Overdue items: List any problems with the course materials or assignments. If there are no issues, this should be clearly stated. This prompts the student to monitor their understanding of the issues or problems.

During the semester, students completed 13 status reports. The status reports made up 5% of the final grade and students were allowed to skip three reports (or alternatively earn extra points by doing all of the assigned status reports).

Outcomes and Lessons Learned: The assignment met the immediate goal of prompting metacognitive reflection by asking students to evaluate their prior learning, plan for future learning, and monitor the learning process (Fogerty, 1994). In addition, the status reports gave the instructor good feedback on the amount of work that students did outside of the scheduled class meetings. An additional benefit was the opportunity to provide feedback to students who submitted status reports with limited content and limited evidence of planning and evaluation.

Many status reports showed clear evidence of evaluation and planning as students reported challenges with specific concepts or assignments and then planned activities in response. Some students failed to mention class meetings or submitted assignments in the current week activity. When this was mentioned in grading feedback, later status reports from these student showed improved tracking of completed work.

As the semester progressed and a few students missed assignments, there was an opportunity to ensure that these were noted and discussed in the overdue items section. In several instances, instructor comments led to students evaluating root causes including poor time management and mandatory overtime at work. Not all of the root causes had obvious solutions, but discussing the root causes offered a chance to plan ways to address the issue and was more productive than simply reminding students about late assignments.

The simple structure for the status reports should work well for courses at all levels. In courses where students have more than a week to complete assignments, status reporting could require students to break assignments down into smaller tasks, which is a useful skill to develop.

References:

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34 (10), 906-911.

Fogarty, R. (1994). How to teach for metacognition. Palatine, IL: IRI/Skylight Publishing.

Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science, 26(1-2),113-125.


Practice with a Reasoning Process to Make Learning Visible and Improve Academic Performance

by Jessica Santangelo, Hofstra University

 

Downloadable

Description of Activity

Motivations and context: I teach a fast-paced, content-heavy introductory biology course. Many students struggle in the course – not because they are not capable, but because they lack a repertoire of learning strategies that best support learning within the structure of the course. Rather than discuss “study strategies” as an add-on to course content, this activity has students model behaviors that make their learning visible, reduce reliance on memorization, and empowers them with a process to improve academic performance.

My basic goal with this activity was to make a very specific process available to students to mitigate the tendency I saw of students, when faced with a challenging question or concept, to simply guess or give up. Namely, students remember one key fact about a complex system from which all other pertinent facts can be derived. In this specific example, they organize those facts in a table and (critically) use the table when faced with questions regarding the system. The process of reasoning from a key fact to a deeper or more applied understanding is not metacognitive in and of itself. In this case, metacognitive development is promoted by the structuring of the in-class work that allows multiple opportunities for practice with the reasoning process.

Nuts and bolts of an example application

In the course we cover the urinary system. The most challenging aspect of this topic is the function of antidiuretic hormone (ADH). It involves understanding the effects of a diuretic (so students can then understand the effects of an antidiuretic) and osmosis – the movement of water across a semipermeable membrane. It further involves blood pressure, blood osmolarity, stimuli that either cause or inhibit release of ADH from the hypothalamus, and impacts of ADH (or lack thereof) on the kidney. Needless to say, there are a lot of moving parts.

I structure two class periods around one concept: Diuretics promote urine production. I tell students that this is the one thing they should memorize. Everything else follows from that one statement. So, rather than memorizing the entire table below, they memorize one statement, then reason their way through all the other information. Making students aware of this general strategy can greatly reduce the amount of time spent memorizing while increasing the amount of time spent making connections between interrelated facts or processes. Indeed, it’s worth asking students to self-identify one key starting point for any concept such that, if they remember that one key point, they can reason through the rest of the information.

The one concept to remember: Diuretics promote urine production.
Diuretic Antidiuretic
urine production Increases / promotes Decreases / inhibits
water loss Increases / promotes Decreases / inhibits
water retention Decreases Increases
blood osmolarity Increases (more salty as remove water) Decreases (less salty as add water)
blood pressure Decreases (as remove water) Increases (as add water)

I introduce the one concept, then have students work in groups to fill in the table on large wall-mounted whiteboards. Throughout their group work I ask questions to promote their metacognitive development like “What do you already know?” and “How did you come to that conclusion?”. This is a key step in the metacognitive process: asking them to make their reasoning visible to themselves and their group-mates. Though students may get stuck, being metacognitive (i.e., asking “what do I know, how do I know it, and how does that help me?”) helps them reason their way through more effectively. At the end of the class session I remind students to test themselves on their ability to start with the one key concept and subsequently explain the table before coming to the next class session.

The next class session, students put all of their notes and other resources away, and recreate the table on the wall-mounted whiteboards using only their brains. Invariably, most groups jump right into filling out the table. But one or two groups will take the time to write “Diuretics promote urine production” on their board before filling in the table. The groups who write this tend to complete the table more quickly and more accurately. I use this as a teachable moment for all the groups by reminding them that they have a simple tool – the one phrase to remember – to guide them in completing the table.

The groups then use their tables as a guide to answer a series of challenging questions about the stimuli for ADH release/inhibition and the associated outcomes. Most groups get bogged down in the questions – they discuss possible answers with their neighbors but go round and round and get confused. I let this happen for a question or two and then I remind students to use the table they put on the board. I ask one student from each group to stand up and model (with their group’s help) how to use the table to answer the next question. At this point, there are lots of “oh”s and “aha”s as students realize it is much easier to arrive at the correct answer using the table.

I then tell students: “You just used a tool (the table) to help you answer this question. What tools do you have available to you when you face a question like this on the exam?” Most of them look around in bewilderment as I don’t allow them to use any outside resources on exams. I then ask “What about the table?” and they say “But we aren’t allowed to bring anything with us to the exam”. And I say “But where did that table come from today?” and they respond “our brains” and I reply, “Exactly. You remembered ONE sentence and then you filled out that whole table with just your brain. So why not jot that table down on your exam?” And their eyes light up…

This is another key step in the metacognitive process: making it obvious to students how they can use this approach on their own to support learning and achievement. The behaviors they modeled in class (remembering one key concept from which to derive all other relevant information, organizing information into an easy-to-reference format, and utilizing that organized information to answer applied questions) should not be used solely in class or when I ask them to do it. They can use those behaviors on their own to promote learning outside of class or on an exam. I have found that unless I make this explicit to students, they rarely use an approach from the classroom on their own.

Outcomes

I’ve been incorporating a variety of activities and practices to promote student metacognitive development into the course for a few years with success. As a result, many students who would not have passed (or would have barely passed) the course have altered their learning strategies and improved their grades – some to A’s and B’s. As I’ve incorporated this specific example with the urinary system I’ve noticed that students are more willing to attempt the challenging ADH questions and are more likely to reason out the answer than to simply guess.

Lessons learned and future directions

Modeling behaviors in a group context works well for these students. Most of them were not challenged in high school the way they are challenged in this course. Embedding tips and tricks that enhance their ability to make their thought process visible (i.e., that promote metacognition) within the very context of the course 1. makes the tips/tricks an inherent part of learning biology rather than “add-ons” and 2. Increases the likelihood that they will use these metacognitive tips/tricks (self-regulation). My goal is to have students model these behaviors with more topics in the course, constantly reinforcing the thought/reasoning process so it is ingrained by the end of the semester.


Can Reciprocal Peer Tutoring Increase Metacognition in Your Students?

Aaron S. Richmond, Ph. D.

How many of you use collaborative learning in your classroom? If you do, do you specifically use it to increase metacognition in your students? If the answer is yes, you are likely building on the work of Hadwin, Jarvela, and Miller (2011) and Schraw, Crippen, and Hartley (2006). For those of you unfamiliar with collaborative learning, I tend to agree with Slavich and Zimbardo’s (2012) definition, in collaborative learning students “…tackle problems and question with peers—especially more knowledgeable peers—insofar as such experiences provide students with opportunities to learn new problem-solving strategies and to debate ideas in a way that challenges their understanding of concepts” (p. 572). There are many ways to use collaborative learning in the classroom, jigsaw classroom, paired annotations, send-a-problem, think-pair-share, three-step interview, peer tutoring, number heads, etc. Of particular interest, recent research on collaborative learning suggests that reciprocal peer tutoring may be particularly useful when your goal is to not only learn course material, but to increase your student’s metacognition (De Backer, Van Keer, Moerkerke, & Valcke, 2016).

In their innovative study, De Backer and colleagues (2016) investigated the effects of using reciprocal peer tutoring (RPT) to support and increase metacognitive regulation in higher education. De Backer and colleagues defined RPT as “the structured exchange of the tutor role among peers in groups/pairs…and enables each student to experience the specific benefits derived from providing and receiving academic guidance.” (p. 191) De Backer et al. had students, over a course of the semester, complete eight peer tutoring sessions. All students were trained to be a tutor,  experienced being a tutor, and tutored their peers at least twice. Tutoring sessions were 120 minutes in length and occurred outside of class. The tutor’s role was to manage the tutees and promote collaborative learning. During each tutoring session, the tutees were asked to solve a problem related to the class content. Each problem had three specific components:

(1) An outline of learning objectives to guide peers’ discussion to central course-related topics; (2) a subtask aimed at getting familiar with the theme-specific terminology; and (3) a subtask in which students were instructed to apply theoretical notions to realistic instructional cases. (De Backer et al., 2016, p. 193)

The problems presented, often did not have clear-cut answers and required considerable cognitive effort. De Backer et al. video recorded all the tutoring sessions and then scored each session on the amount and type of metacognitive regulation that occurred by both tutors and tutees. For example, they looked at the student’s ability to orient, plan, monitor, and evaluate. They also measured the level of processing (whether it was shallow or deep processing of metacognitive strategies). Appendix D of De Backer et al.’s article provided examples of how to code metacognitive data. See Table 1 for an example of the scoring (De Backer et al., 2016, p. 41). They then scored the frequency of metacognitive regulations that occurred per session.

Table 1. Examples of Lower and Deep Level Metacognitive Regulation in Reciprocal Peer Tutoring by De Backer et al. (2016, pp. 41-42)
Metacognition–Monitoring
Comprehension Monitoring Noting lack of comprehension T: “Does everyone understand the outlines of instructional behaviorism?”
t1: “I still don’t understand the concept of aptitude.”
Checking comprehension by repeating (LL) T: “Does everyone agree now that instructional behaviorism and instructional constructivism are opposites?”
t1: “I think (…) because in behaviorism the instructor decides on everything but constructivism is about learners being free to construct their own knowledge.:
t2: “Yes constructivist learners are much more independent and active, not so?”
Checking comprehension by elaborating (DL) T: “The behavioristic instructor permanently provides feedback. Who knows why?”
t1: “Is it not to make sure that learners don’t make mistakes?”
t2: “Could that also be the reason why they structure the learning materials extensively? And why they don’t like collaborative learning? Because collaborative learning requires

spontaneous discussions between students. You cannot really structure it in advance, not

so?”

Note. DL = Deep learning, LL = low or shallow learning, T = tutor, t1 and t2 = tutees.

De Backer and colleagues (2016) found that as the semester progressed, students engaged in more and more metacognitive regulatory processes. Specifically, their orientation increased, their monitoring increased and their evaluation increased (in general the frequency was 3 times greater at the end of the semester than at the beginning of the semester). However, planning stayed stagnant over the course of the semester. Specifically, the frequency of planning use continued to be low throughout the semester.  Far more interesting was that students (over the course of the semester) decreased their use of shallow or low-level metacognitive strategies and increased their use of deep-level metacognitive strategies as result. Increases in metacognitive regulation occurred across most types of metacognitive strategies (e.g., regulation, orientation, activating prior knowledge, task analysis, monitoring, and evaluation).

 As demonstrated by De Backer and colleagues study and the work of other researchers (e.g., King, 1997; De Backer, Van Keer, & Valcke, 2012), RPT and other collaborative learning instructional methods may be a useful in increasing metacognitive processes of students.

Concluding Thoughts and Questions for You

After reading De Backer et al. (2016), I was fascinated by the possible use of RPT in my own classroom. So, I started to think about how to implement it myself. Some questions arose that I thought you might help me with:

  1. How do I specifically scaffold the use of RPT in my classroom? More so, what does a successful RPT session resemble? Fortunately, De Backer and colleagues did provide an appendix to their study (Appendix C) that gives an example of what a tutoring session may look like.
  2. How many tutoring sessions is enough to increase the metacognition in my students? De Backer et al. had 8 sessions. This would be difficult for me to squeeze into my course planning. Would 3-4 be enough? What do you think? But then not all students could be a tutor. Do they get more (metacognitively) out of being a tutor vs. a tutee? This is something that De Backer and colleagues did not analyze. (Hint, hint all you folks—SoTL project in the making;)
  3. De Backer et al. briefly described that the tutors had a 10-page manual on how to be a tutor. Hmm…I don’t know if my students would be able to effectively learn from this. What other simple ways might we use to teach students how to be effective tutors in the context of RPT?
  4. Finally, are you do anything like De Backer et al.? And if so, do you think it is improving your student’s metacognitive regulation?

 References

De Backer, L., Van Keer, H., Moerkerke, B., & Valcke, M. (2016). Examining evolutions in the adoption of metacognitive regulation in reciprocal peer tutoring groups. Metacognition and Learning, 11, 187-213. doi:10.1007/s11409-015-9141-7

De Backer, L., Van Keer, H., & Valcke, M. (2012). Exploring the potential impact of reciprocal peer tutoring on higher education students’ metacognitive knowledge and metacognitive regulation. Instructional Science, 40, 559–588.

Hadwin, A. F., Järvelä, S., & Miller, M. (2011). Self-regulated, co-regulated, and socially shared regulation of learning. In B. J. Zimmerman & D. H. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 65–84). New York: Routledge.

King, A. (1997). Ask to think-tell why©: A model to transactive peer tutoring for scaffolding higher level complex learning. Educational Psychologist, 32, 221–235.

Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111–139.

Slavich, G. M., & Zimbardo, P. G. (2012). Transformational teaching: Theoretical underpinnings, basic principles, and core methods. Educational Psychology Review, 24, 569-608. doi:10.1007/s10648-012-9199-6


The GAMES Survey: A Tool to Scaffold Metacognitive Practices

by Lauren Scharff, U. S. Air Force Academy

As many of us educators know, an unfortunately large number of students, both at the K-12 and college-levels, do not give much thought to how and why they try to learn the way they do, much less demonstrate strong habits of metacognition. Talking in general about metacognition might garner some students’ interest, but without some concrete guidance on how to engage in behaviors that support metacognition, students are less likely to develop such practices.

Thus, I was pleased to rediscover the GAMES survey / self-assessment tool created by Marilla Svinicki when I was re-reading her excellent book, Learning and Motivation in the Postsecondary Classroom, as part of a book group at my institution. GAMES stands for:

  • Goal-oriented studying
  • Active studying
  • Meaningful and memorable studying
  • Explain to understand
  • Self-monitor

For each component of the survey, there are five to ten behaviors for which students indicate their likelihood to perform using a 5-point scale ranging from “Never” to “Always.” These behaviors are distinct, tangible actions such as:

  • Analyze what I have to do before beginning to study. (Goal-oriented studying)
  • Ask myself questions before, during, and after studying. (Active studying)
  • Make connections between what I am studying and past classes or units. (Meaningful and memorable studying)
  • Discuss the course content with anyone willing to listen. (Explain to understand)
  • Keep track of things I don’t understand and note when they finally become clear and what made that happen. (Self-monitor)

Marilla suggests that the use of such an instrument can help students become more aware of the possibility of self-regulating their learning behaviors. This combination of awareness and self-regulation is key to metacognition, and is what is prompting this blog post.

Through the process of completing the GAMES survey, students are introduced to more than 30 specific behaviors that holistically will support metacognition about learning. Students can easily observe areas where they might show stronger or weaker engagement, and they can focus their efforts where they are weaker, using the list of specific, tangible behaviors as a scaffold to help them target their activity.

At my institution, the U. S. Air Force Academy, we plan to use the GAMES survey in a current Science of Learning workshop series for our students led by students. Most of the seminar attendees are students who are struggling academically, but we are advertising that, by “studying smarter, not only harder” students of all levels of academic achievement can improve their learning. We believe that the GAMES survey will help students target specific behaviors that have been shown to support deeper learning.

We are not the only institution that has seen value in disseminating the GAMES survey to students. For example, several years ago, Georgia Tech encouraged its use across all sections of their first-year seminar. Importantly, they didn’t simply ask students to complete the survey and that was it. They encouraged instructors to help students use the results in a meaningful way, such as by picking a weak behavior and striving to improve it over a 2-week time period, or by having students journal about changes they made and how those changes seemed to impact their academic performance.

This survey tool is appropriate across the disciplines and only takes a few minutes for students to complete. Its use and a short follow-on activity to encourage meaningful application would not add great burden to a faculty member or take much time from normal course activities. But, the pay-off could be large for individual students, both in that course as well as others if they transfer the principles into new contexts. It’s definitely worth a try!

——————

Svinicki, M. D. (2004). Learning and motivation in the postsecondary classroom. Bolton, MA: Anker Publishing Co.

If you do not have access to Marilla Svinicki’s book, you can read a short online overview of GAMES on the Association for Psychological Science website (2006), and obtain a pdf copy of the survey online.


Distance Graduate Programs and Metacognition

by Tara Beziat at Auburn University at Montgomery 

As enrollment in online programs and online courses continues to increase (Merriman & Bierema, 2014), institutions have recognized the importance of building quality learning experiences for their students. To accomplish this goal, colleges and universities provide professional development, access to instructional designers and videos to help faculty build these courses. The focus is on how to put the content in an online setting. What I think is lacking in this process is the “in the moment” discussions about managing learning. Students often do not get to “hear” how other students are tackling the material for the course and how they are preparing for the assignments. Activities that foster metacognition are not built into the instructional design process.

In the research on learning and metacognition, there is a focus on undergraduates (possibly because they are an easily accessible population for college researchers) and p-12 students. The literature does not discuss helping graduate students hone their metacognitive strategies. Knowing the importance of metacognition and its relationship to learning, I have incorporated activities that focus on metacognition into my online graduate courses.

Though graduate students are less likely to procrastinate than undergraduate students (Cao, 2012), learning online requires the use of self-regulation strategies (Dunn & Rakes, 2015). One argument many students have for liking distance courses is that they can do the work at their own pace and at a time that works with their schedule. What they often to do not take into account is that they need to build time into their schedule for their course work. Dunn and Rakes (2015) found that online graduate students are not always prepared to be “effective learners” but can improve their self-regulation skills in an online course. Graduate students in an online course need to use effective metacognitive strategies, like planning, self- monitoring and self-evaluation.

In addition to managing their time, which may now include family and work responsibilities, their course work may present its own set of new challenges. Graduate work asks students to engage in complex cognitive processes often in an online setting.

To help graduate students with their learning process I have built in metacognitive questions in to our discussion posts. For each module of learning, students are asked to answer a metacognitive question related to the planning, monitoring or evaluation of their learning. They are also asked to answer a content question. I have found their answers to the metacognitive questions surprising, enlightening and helpful. Additionally, these discussions have provided insights into how to preparing for the class, various resources for this course on their own classrooms and managing time, juggling “life.”

Early in the semester I ask, “How are you going to actively monitor your learning in this course?” Often students respond that they will check their grades on Blackboard (our course management system), specifically they will check to see how they did on assignments. I raise a concern with these ways of monitoring. Students need to be doing some form of self-evaluation before turning in their work. If they are waiting until they get the “grade” to know how well they are doing it may be too late. Other students have a better sense of how to monitor their knowledge during a course. Below are some examples:

  • “setting my goals with each unit and reflecting back after each reading to be sure my goals and understanding are met.”
  • “I intend on reading the required text and being able to ask myself the following questions ‘how well did I understand this’ or ‘can I explain this information to a classmate if asked to do so.’”
  • “comparing my knowledge with the course objectives”
  • “checking my work to make sure the guideline set by the rubric are being followed.”

These are posted in the discussions and their fellow classmates can see the strategies that they are using to manage and monitor their learning. In their responses they will note they had not thought about doing x but they plan to try it. By embedding a metacognitive prompt in each of the 8 modules and giving students a chance share how they monitor their learning I hope to build a better understanding of the importance of metacognition in the learning process and give them ways to foster metacognition in their own classrooms.

Later on in the class I ask the students about how things are going with their studying. Yes, this is a graduate level class. But this may be the students’ first graduate level course or this may be their first online course. Or this could be their last class in a fully online program but we can always improving our learning. Below are some example of students responses to: What confusions have you gotten clarified? What changes have you made to your study habits or learning strategies?

  • “The only changes to the study habits or strategies that I have used is to try the some of the little tips or strategies that come up in the modules or discussions.”
  • “I allow myself more time to study.”
  • “I have reduced the amount of notes I take.  Now, my focus is more on summarizing text and/or writing a “gist” for each heading.”
  • “I continue to use graphic organizers to assist me with learning and understanding new information.  This is a tactic that is working well for me.”

As educators, we need to make sure we are addressing metacognition with our graduate students and that we are providing opportunities for them to practice metacognition in an online setting. Additionally, I would be interested in conducting future research that examines online graduate students awareness of metacognitive strategies, their use of these strategies in an online learning environment and ways to improve their metacognitive strategies. If you would be interested in collaborating on a project about online graduate students metacognitive skills send me an email.

 References

Cao, L. (2012). Differences in procrastination and motivation between undergraduate and graduate students. Journal of the Scholarship of Teaching and Learning, 12(2), 39-64.

Dunn, K.E. & Rakes, G.C. (2015). Exploring online graduate students’ responses to online self-regulation training. Journal of Interactive Online Learning, 13(4), 1-21.

Merriam, S.B., & Bierema, L.L. (2014). Adult learning: Linking theory and practice. San Francisco, CA: Jossey-Bass.

 


Metacognition for Scholars: How to Engage in Deep Work

By Charity S. Peak, Ph.D. (Independent Consultant)

True confession: I’m addicted to shallow work. I wouldn’t say I’m a procrastinator as much as I am someone who prefers checking small things off my list or clearing my inbox over engaging in more complex tasks. I know I should be writing and researching. It’s just as much of my job as teaching or administrative duties, but I get to the end of my day and wonder why I didn’t have time for the most critical component of my promotion package – scholarship.

It turns out I’m not the only one suffering from this condition (far from it), and luckily there is a treatment plan available. It begins with metacognition about how one is spending time during the day, self-monitoring conditions that are most distracting or fruitful for productivity, and self-regulating behaviors in order to ritualize more constructive habits. Several authors offer suggestions for how to be more prolific (Goodson, 2013; Silvia, 2007), especially those providing writing prompts and 15-minute exercises, but few get to the core of the metacognitive process like Cal Newport’s (2016) recent Deep Work: Rules for Focused Success in a Distracted World. Newport, a professor of computer science at Georgetown and author of 5 books and a blog on college success, shares his strategies for becoming a prolific writer while balancing other faculty duties.

Newport claims that deep work is the ability to focus without distraction on a cognitively demanding task. It is arguably the most difficult and crucial capability of the 21st century. Creative thinking is becoming progressively rare in our distracted world, so those who can rise above shallow work are guaranteed to demonstrate value to their employers, especially colleges and universities. In order to be creative and produce new ideas, scholars must engage in deep work regularly and for significant periods of time. Instead, Newport argues that most people spend their days multitasking through a mire of shallow work like email, which is noncognitively demanding and offers little benefit to academia, let alone an individual’s promotion. In fact, he cites that “a 2012 McKinsey study found that the average knowledge worker now spends more than 60 percent of the workweek engaged in electronic communication and Internet searching, with close to 30 percent of a worker’s time dedicated to reading and answering e-mail alone” (Newport, 2016, p. 5). Sound like someone you know?

The good news is that if you carve out space for deep work, your professional career will soar. The first step is to become metacognitive about how you are spending your time during the day. One simple method is to self-monitor how you use your work days by keeping a grid near your computer or desk. At the end of every hour throughout your day, record how much time you actually spent doing your job duties of teaching (including prep and grading), writing and research, and service. Like a food diary or exercise journal, your shallow work addiction will become apparent quickly, but you will also gain metacognition about when and under which conditions you might attempt to fit in time for deep work.

Once you have a grasp of the issue at hand, you can begin to self-regulate your behavior by blocking off time in your schedule in which you can engage in a deeper level of creative thinking. Each person will gravitate toward a different modality conducive to an individual’s working styles or arrangements. The author offers a few choices for you to consider, which have been proven to be successful for other scholars and business leaders:

  • Monastic: Eliminate or radically minimize shallow obligations, such as meetings and emails, in an effort to focus solely on doing one thing exceptionally well. Put an out-of-office response on your email, work somewhere other than your workplace, or take a year-long sabbatical in order to completely separate from frivolous daily tasks that keep you away from research and writing. Most teaching faculty and academic leaders are unable to be purely monastic due to other duties.
  • Bimodal: Divide your time, dedicating some clearly defined stretches to deep pursuits and leaving the rest open to everything else. During the deep time, act monastically – seek intense and uninterrupted concentration – but schedule other time in your day for shallow work to be completed. One successful scholar shared the possibility of teaching a very full load one semester but not teaching at all during the next as an example of engaging deeply in both critical duties.
  • Rhythmic: Also called the “chain method” or “snack writing,” create a regular habit of engaging in deep work, such as every morning before going into work or at the end of each day. Blocking off one’s calendar and writing every day has been proven to be one of the most productive habits for scholars attempting to balance their research with other duties (Gardiner & Kearns, 2011).
  • Journalistic: Fit deep work into your schedule wherever you can – 15 minutes here, an hour there. Over time you will become trained to shift into writing mode on a moment’s notice. This approach is usually most effective for experienced scholars who can switch easily between shallow and deep work. Inexperienced writers may find that the multitasking yields unproductive results, so they should proceed cautiously with this method.

The key is to do something! You must ritualize whichever method you choose in order to optimize your productivity. This may take some trial and error, but with your new-found metacognition about how you work best and some alternative strategies to try, you will be more likely to self-regulate your behaviors in order to be successful in your scholarly pursuits. If you try new approaches and are still not engaging in enough deep work, consider joining a writing group or finding a colleague to hold you accountable on a regular basis. Again, like diet and exercise, others can sometimes provide the motivation and deadlines that we are unable to provide for ourselves. Over time, your addiction to shallow work will subside and your productivity will soar… or so they tell me.

Resources:

Gardiner, M., & Kearns, H. (2011). Turbocharge your writing today. Nature 475: 129-130. doi: 10.1038/nj7354-129a

Goodson, P. (2013). Becoming an academic writer: 50 exercises for paced, productive, and powerful writing. Los Angeles: Sage.

Newport, C. (2016). Deep work: Rules for focused success in a distracted world. New York: Grand Central Publishing.

Silvia, P. J. (2007). How to write a lot: A practical guide to productive academic writing. Washington, D.C.: American Psychological Association.


Fighting Imposter Syndrome Through Metacognition

By Charity S. Peak, Ph.D.

Have you ever felt like an imposter at work? Taught a class that was not your expertise? Felt intimidated before giving a presentation? Nearly every faculty member experiences this imposter phenomenon at some point. After all, as faculty we work around incredibly smart and talented people who shine from being experts in their field. Additionally, people drawn to academia naturally feel compelled to be knowledgeable and often find themselves to be inadequate when they are not (Huston, 2009).

Imposter syndrome is “an overwhelming sense of being a fraud, a phony, of not being good enough for [a] job, despite much evidence to the contrary” (Kaplan, 2009). Apart from accomplishing significant professional milestones, people cannot seem to internally acknowledge their success or feel deserving. This sense of being an imposter is prevalent among women but is increasingly being revealed by men as well. Although the condition is often referred to as a syndrome, it is important to understand that it is NOT actually a diagnosable mental illness found in the DSM-V. Instead, it is an affliction, similar to test or performance anxiety, experienced by a variety of high-achieving individuals that can be treated successfully using metacognition and self-regulation.

Reactions to imposter syndrome vary widely and by individual. Typically, imposter phenomenon starts with a self-sabotaging internal dialogue, such as:

  • Who do I think I am? I’m not smart enough to teach this class or present on this topic.
  • What if my students ask me a question that I can’t answer?
  • What if someone finds out I don’t know what I’m talking about?
  • I’m not cut out for this. I really can’t do this.

A physical reaction similar to other stressful situations (fight, flight, or freeze) often follows:

  • Increased blood pressure
  • Blushing
  • Sweating
  • Shaking
  • Tonic immobility (i.e., mental block or “deer in headlights”)

Faculty in these situations tend to respond in one of two ways:

  • Undercompensating by becoming submissive, overly agreeable or even apologetic
  • Overcompensating with defensive, bossy and aggressive behaviors
  1. Recognize symptoms when they arise and recenter yourself through breathing:
  • Assume a comfortable posture
  • Close your eyes if possible
  • Focus on the sensations of your body
  • Breathe in through your nose and out through your mouth
  • When your mind wanders, gently bring it back to your breath
  • Breathe in, breathe out
  • Repeat for at least 10 breaths and up to 5 minutes
  1. Reconstruct a new, positive internal dialogue. Talk to yourself as you would a good friend by being supportive and confidence-building.
  2. Posture yourself as confident. It turns out that “fake it till you make it” works with regard to physical posture. People who use Power Poses for 2 minutes demonstrate higher levels of confidence-building hormones (testosterone) as opposed to stress-inducing hormones (cortisol) (Carney, Cuddy & Yap, 2010; Cuddy, 2012).
  3. Acknowledge the limits of your knowledge. Instead of hiding your lack of expertise, build a repertoire of ways to deflect difficult questions, such as:
  • What do you think?
  • I don’t know. Does anyone want to look it up and tell us the answer?
  • Great question. Can we talk about that more after class (or meeting)?
  • Let’s not dive too deeply into that issue because it might distract us from today’s agenda.
  • Good thought. Does anyone want to collaborate to address that concern?
  • Here is what I know, and here is what I don’t know (Huston, 2009).
  1. Avoid “teaching as telling.” Rather than lecturing, which requires great preparation and pressure to be the expert in the room, move toward new pedagogical models of facilitation which turn the teaching burden over to the students, such as jigsaw and gallery walk.
  2. Know that you are not alone. It is plausible that nearly everyone in the room has felt this way at one point or another in their careers, even though they may not readily share these thoughts with others. Normalizing the feelings to yourself will start to defuse your anxiety.
  3. Share the issue with others you trust. A mentor or even a small community of colleagues can collaboratively strategize about how to address the issue.
  4. Recognize external factors that might contribute. Often people blame themselves for toxic situations which were created by outside circumstances. If the situation persists, consider declining future involvement to avoid setting yourself up for difficulties.

“Awareness is half the battle” really does apply to imposter syndrome. Through metacognition, you can conquer the self-defeating thoughts and behaviors that might prevent you from succeeding in your personal and professional life. Intentional self-monitoring of negative internal dialogue followed by practicing self-regulation through the simple strategies outlined above is the antidote to imposter syndrome. So next time you feel yourself break into a sweat (figuratively or literally), assume a Power Pose and leverage metacognition to triumph over your doubts!

Metacognition promotes success by helping us overcome self-defeating thoughts. Share on X
 Resources:

Carney, D. R., Cuddy, A. J., & Yap, A. J. (2010). Power posing brief nonverbal displays affect neuroendocrine levels and risk tolerance. Psychological Science, 21(10), 1363-1368. doi: 10.1177/0956797610383437

Cuddy, A. (2012, October 1). Your body language shapes who you are [Video file]. Retrieved from https://www.ted.com/talks/amy_cuddy_your_body_language_shapes_who_you_are?language=en

Huston, T. (2009). Teaching What You Don’t Know. Cambridge, MA: Harvard University Press.

Kaplan, K. (2009). Unmasking the impostor. Nature, 459(21): 468-469. doi: 10.1038/nj7245-468a


Metacognitive Judgments of Knowing

Roman Taraban, Ph.D., Dmitrii Paniukov, John Schumacher, Michelle Kiser, at Texas Tech University

“The more you know, the more you know you don’t know.” Aristotle

Students often make judgments of learning (JOLs) when studying. Essentially, they make a judgment about future performance (e.g., a test) based on a self-assessment of their knowledge of studied items. Therefore, JOLs are considered metacognitive judgments. They are judgments about what the person knows, often related to some future purpose. Students’ accuracy in making these metacognitive judgments is academically important. If students make accurate JOLs, they will apply just the right amount of time to mastering academic materials. If students do not devote enough time to study, they will underperform on course assessments. If students spend more time than necessary, they are being inefficient.

As instructors, it would be helpful to know how accurate students are in making these decisions. There are several ways to measure the accuracy of JOLs. Here we will focus on one of these measures, termed calibration. Calibration is the difference between a student’s JOL related to some future assessment and his actual performance on that assessment. In the study we describe here, college students made JOLs (“On a scale of 0 to 100, what percent of the material do you think you can recall?”) after they read a brief expository text. Actual recall was measured in idea units (IUs) (Roediger & Karpicke, 2006). Idea units are the chunks of meaningful information in the text.   Calibration is here defined as JOL – Recalled IUs, or simply, predicted recall minus actual recall. If the calibration calculation leads to a positive number, you are overconfident to some degree; if the calculation result is negative, then you are underconfident to some degree. If the result is zero, then you are perfectly calibrated in your judgment.

The suggestion from Aristotle (see quote above) is that gains in how much we know lead us to underestimate how much we know, that is, we will be underconfident. Conversely, when we know little, we may overestimate how much we know, that is, we will be overconfident. Studies using JOLs have found that children are overconfident (predicted recall minus actual recall is positive) (Lipko, Dunlosky, & Merriman, 2009; Was, 2015). Children think they know more than they know, even after several learning trials with the material. Studies with adults have found an underconfidence with practice (UWP) effect (Koriat et al., 2002), that is, the more individuals learn, the more they underestimate their knowledge. The UWP effect is consistent with Aristotle’s suggestion. The question we ask here is ‘which is it’: If you lack knowledge, do your metacognitive judgments reflect overconfidence or underconfidence, and vice versa? Practically, as instructors, if students are poorly calibrated, what can we do to improve their calibration, that is, to recalibrate this metacognitive judgment.

We addressed this question with two groups of undergraduate students, as follows. Forty-three developmental-reading participants were recruited from developmental integrated reading and writing courses offered by the university, including Basic Literacy (n = 3), Developmental Literacy II (n = 29), and Developmental Literacy for Second Language Learners (n = 11). Fifty-two non-developmental participants were recruited from the Psychology Department subject pool. The non-developmental and developmental readers were comparable in mean age (18.3 and 19.8 years, respectively) and the number of completed college credits (11.8 and 16.7, respectively), and each sample represented roughly fifteen academic majors. All participants participated for course credit. The students were asked to read one of two expository passages and to recall as much as they could immediately. The two texts used for the study were each about 250 words in length and had an average Flesch-Kincaid readability score of 8.2 grade level. The passages contained 30 idea units each.

To answer our question, we first calculated calibration (predicted recall – actual recall) for each participant. Then we divided the total sample of 95 participants into quartiles, based on the number of idea units each participant recalled. The mean proportion of correct recalled idea units, out of 30 possible, and standard deviation in each quartile for the total sample were as follows:

Q1: .13 (.07); Q2: .33 (.05); Q3: .51 (.06); Q4: .73 (.09). Using quartile as the independent variable and calibration as the dependent variable, we found that participants were overconfident (predicted recall > actual recall) in all four quartiles. However, there was also a significant decline in overconfidence from Quartile 1 to Quartile 4 as follows: Q1: .51; Q2: .39; Q3: .29; Q4: .08. Very clearly, the participants in the highest quartile were nearly perfectly calibrated, that is, they were over-predicting their actual performance by only about 8%, compared to the lowest quartile, who were over-predicting by about 51%. This monotonic trend of reducing overconfidence and improving calibration was also true when we analyzed the two samples separately:

NON-DEVELOPMENTAL: Q1: .46; Q2: .39; Q3: .16; Q4: .10;

DEVELOPMENTAL: Q1: .57; Q2: .43; Q3: .39; Q4: .13.

The findings here suggest that Aristotle may have been wrong when he stated that “The more you know, the more you know you don’t know.” Our findings would suggest that the more you know, the more you know you know. That is, calibration gets better the more you know. What is striking here is the vulnerability of weaker learners to overconfidence. It is the learners who have not encoded a lot of information from reading that have an inflated notion of how much they can recall. This is not unlike the children in the Lipko et al. (2009) research mentioned earlier. It is also clear in our analyses that typical college students as well as developmental college students are susceptible to overestimating how much they know.

It is not clear from this study what variables underlie low recall performance. Low background knowledge, limited vocabulary, and difficulty with syntax, could all contribute to poor encoding of the information in the text and low subsequent recall. Nonetheless, our data do indicate that care should be taken in assisting students who fall into the lower performance quartiles to make better calibrated metacognitive judgments. One way to do this might be by asking students to explicitly make judgments about future performance and then encouraging them to reflect on the accuracy of those judgments after they complete the target task (e.g., a class test). Koriat et al. (1980) asked participants to give reasons for and against choosing responses to questions before the participants predicted the probability that they had chosen the correct answer. Prompting students to consider the amount and strength of the evidence for their responses reduced overconfidence. Metacognitive exercises like these may lead to better calibration.

References

Koriat, A., Lichtenstein, S., Fischoff, B. (1980). Reasons for confidence. Journal of Experimental Psychology: Human Learning and Memory, 6(2), 107-118.

Koriat, A., Sheffer, L., & Ma’ayan, H. (2002). Comparing objective and subjective learning curves: Judgments of learning exhibit increased underconfidence with practice. Journal of Experimental Psychology: General, 131, 147–162.

Lipko, A. R., Dunlosky, J., & Merriman, W. E. (2009). Persistent overconfidence despite practice: The role of task experience in preschoolers’ recall predictions. Journal of Experimental Child Psychology, 102(2), 152-166.

Roediger, H., & Karpicke, J. D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological Science, 17(3), 249-255.

Was, C. (2015). Some developmental trends in metacognition. Retrieved from

https://www.improvewithmetacognition.com/some-developmental-trends-in-metacognition/.