Writing metacognitive learning objectives for metacognitive training that supports student learning

by Patrick Cunningham, Ph.D., Rose-Hulman Institute of Technology

Teaching through the COVID-19 pandemic has highlighted disparities in how students approach their learning. Some have continued to excel with hybrid and online instruction while others, and more than usual, have struggled. Compounding these struggles, these students also find themselves behind or with notable gaps in their prerequisite knowledge for following courses. A significant component of these struggles may be due to not having developed independence in their learning. Engaging in explicit metacognitive activities directly addresses this disparity, improving students’ abilities to overcome these struggles. Given the present challenges of living through COVID-19, this is more important now than ever. However, creating activities with metacognitive focus is likely unfamiliar and there are not a lot of resources to guide their development. Here I seek to demonstrate an accessible approach, an entry point, for supporting students’ growth as more skillful and independent learners grounded in metacognition.

Cognitive Learning Objectives are Just the Start

Creating explicit learning objective is one means by which educators commonly try to support students’ independence in learning. Typically learning objectives focus on the cognitive domain, often based on Bloom’s Taxonomy. The cognitive domain refers to how we think about or process information. Bloom’s taxonomy for the cognitive domain is comprised of Remembering, Understanding, Applying, Analyzing, Evaluating, and Creating (Krathwohl, 2002). Each of these gives an indication how a student is expected to engage or use the material we are teaching. For constructing learning objectives, there are lists of action verbs associated with each Bloom category.

Consider this cognitive learning objective for a computer programming course.

Students will be able to create and implement functions with inputs and an output in C++ programs to accomplish a specified task on an Arduino board with a prewired circuit.

This learning objective is specific to a lesson and targets the Apply level of Bloom’s taxonomy. (The approach I am presenting could equally apply to broader course-level learning objectives, but I think the specificity here makes the example more tangible.) This objective uses good action verbs (bolded) and has a prescribed scope and context. But is it adequate for guiding student learning if they are struggling with it?

Metacognitive Learning Objectives can Direct Learning Activities

silhouette shape of brain with the words "metacognitive learning objectives"inside the shape

Cognitive learning objectives point students to what they should be able to do with the information but do not usually provide guidance for how they should go about developing their ability to do so. Metacognition illuminates the path to developing our cognitive abilities. As a result, metacognitive training can support students’ attainment of cognitive learning objectives. Such training requires metacognitive learning objectives.

Metacognitive learning objectives focus on our awareness of the different ways we process information and how we regulate and refine how we process information. Metacognitive knowledge includes knowledge of how people (and we as individuals) process information, strategies for processing information and monitoring our thinking, and knowledge of the cognitive demands of specific tasks (Cunningham, et al., 2017). As we engage in learning we draw on this knowledge and regulate our thinking processes by planning our engagement, monitoring our progress and processes, adjusting or controlling our approaches, and evaluating the learning experience (Cunningham, et al., 2017). Metacognitive monitoring and evaluation feed back into our metacognitive knowledge, reinforcing, revising, or adding to it.

Example Implementation of Metacognitive Learning Objectives

Considering our example cognitive learning objective, how could we focus metacognitive training to support student attainment of it? Two possibilities include 1) focusing on improving students’ metacognitive knowledge of strategies to practice and build proficiency with writing functions or 2) supporting students’ accurate self-assessment of their ability to demonstrate this skill. Instructors can use their knowledge of their students’ current strategies to decide which approach (or both) to take. For example, if it appears that most students are employing limited learning strategies, such as memorizing examples by reviewing notes and homework, I might focus on teaching students about a wider range of effective learning strategies. The associated metacognitive learning objective could be:

Students will select and implement at least two different elaborative learning strategies and provide a rationale for how they support greater fluency with functions.

The instructional module could differentiate categories of learning objectives (e.g., memorization, elaboration, and organization), demonstrate a few examples, and provide a more complete list of elaborative learning strategies (Seli & Dembo, 2019). Then students could pick one to do in class and one to do as homework. If, on the other hand, it appears that most students are struggling to self-assess their level of understanding, I might focus on teaching students how to better monitor their learning. The associated metacognitive learning objective could be:

Students will compare their function written for a specific application, and completed without supports, to a model solution, using this as evidence to defend and calibrate their learning self-assessment.

Here the instructional module could be a prompt for students to create and implement a function, from scratch without using notes or previously written code. After completing their solutions, students would be given access to model solutions. In comparing their solution to the model, they could note similarities, differences, and errors. Then students could explain their self-assessment of their level of understanding to a neighbor or in a short paragraph using the specific comparisons for evidence. These examples are metacognitive because they require students to intentionally think about and make choices about their learning and to articulate their rationale and assessment of the impact on their learning. I believe it is important to be explicit with students about the metacognitive aim – to help them become more skillful learners. This promotes transfer to other learning activities within the class and to their learning in other classes.

Implementing and Supporting Your Metacognitive Outcomes

In summary, to create actionable metacognitive learning objectives I recommend,

  • clarifying the cognitive learning objective(s) you aim to support
  • investigating and collecting evidence for what aspect(s) of learning students are struggling with
  • connecting the struggle(s) to elements of metacognition
  • drafting a metacognitive learning objective(s) that address the struggle(s)

Armed with your metacognitive learning objectives you can then craft metacognitive training to implement and assess them. Share them with a colleague or someone from your institution’s teaching and learning center to further refine them. You may want to explore further resources on metacognition and learning such as Nilson’s (2013) Creating Self-Regulated Learners, Seli and Dembo’s (2019) Motivation and learning strategies for college success, and Svinicki’s GAMES© survey in (Svinicki, 2004). Or you could watch my Skillful Learning YouTube video, What is Metacognition and Why Should I Care?.

If metacognition is less familiar to you, avoid overwhelm by choosing one element of metacognition at a time. For example, beyond the above examples, you could focus on metacognitive planning to support students better navigating an open-ended project. Or you could help students better articulate what it means to learn something or experience the myth of multitasking (we are task switchers), which are elements pertaining to metacognitive knowledge of how people process knowledge. Learn about that element of metacognition, develop a metacognitive learning objective for it, create the training materials, and implement them with your students. You will be supporting your students’ development as learners generally, while you also promote deeper learning of your cognitive course learning objectives. Over time, you will have developed a library of metacognitive learning objectives and training, which you could have students explore and self-select from based on their needs.

Acknowledgements

This blog post is based upon metacognition research supported by the National Science Foundation under Grant Nos. 1932969, 1932958, and 1932947. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

References

Cunningham, P. J., Matusovich, H. M., Hunter, D. A., Williams, S. A., & Bhaduri, S. (2017). Beginning to Understand Student Indicators of Metacognition. In the proceedings of the American Society for Engineering Education (ASEE) Annual Conference & Exposition, Columbus, OH.

Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into practice41(4), 212-218.

Nilson, L. (2013). Creating self-regulated learners: Strategies to strengthen students? self-awareness and learning skills. Stylus Publishing, LLC.

Seli, H., & Dembo, M. H. (2019). Motivation and learning strategies for college success: A focus on self-regulated learning. Routledge.

Svinicki, M. D. (2004). Learning and motivation in the postsecondary classroom. Anker Publishing Company.


Being Authentic: Modeling Metacognitive Growth and Connecting with Students

by Patrick Cunningham, Ph.D., Rose-Hulman Institute of Technology

Learning takes effort and can feel hard at times. Likewise, learning to manage one’s learning processes better, growing metacognitively, is an effortful process. Because approaches to learning are habitual, deeply ingrained over time, changing them is hard. Metacognitive growth often progresses in fits and starts with cycles improvement and relapse into old habits. This is true for our students and for us as instructors. Remembering this can help us help them better with metacognitive lessons that can guide them throughout their lives.

I often say that teaching students about metacognition and engaging them in their metacognitive growth is one of the most important and authentic things I do academically. I have expertise within my field (Mechanical Engineering, Dynamic Systems and Control) and I am accomplished at applying it to engineering problems. When I engage students in learning this content, I model this expertise. I strive to make my content-focused teaching authentic, but it isn’t authentic in the same way as providing instructional experiences for my students on metacognition. While I may know which disciplinary concepts students will likely struggle with, my struggles with those concepts are a distant memory. However, as I engage my students in metacognitive growth, i.e., changing my habitual approaches to learning, my struggles are concurrent with theirs.

image of a human figure helping another human figure up a hill

Becoming a student again

For example, I have encountered my metacognitive struggles as I have been learning German, initially as a hobby and now more intentionally as I prepare for a sabbatical in Germany. About a year-and-a-half ago I decided to sign up for a Duolingo account to see if I could resurrect and build on my prior German language experience. I had just signed my children up for accounts to practice Spanish and sensed an opportunity to finally work towards a long-held personal goal – becoming proficient in another language. Armed with my knowledge of metacognition, I wanted to make my practice effective and efficient. I set a modest but good practice goal of two grammar modules per day, and I jumped in. I have been consistent in my daily practice – only missing about three days in 18 months – and I have added some varied strategies to practice German – Duolingo stories (spoken dialogues with text), trying to use basic phrases in my daily life, and trying to read German news stories. However, I have also noticed some metacognitive pitfalls in my language practice, even as I have gotten more serious about it.

I have not engaged in recall practice, despite the pop-up messages reminding me that I should take time after a session to recall new vocabulary and key grammar and usage insights. I also know its value, but I tell myself I just don’t have time. I am avoiding a good strategy and making poor use of my metacognitive knowledge of strategies and tasks.

I also lack a clear learning goal. What does proficient mean? How will I know I have achieved it? What are appropriate incremental goals that build towards proficiency? Admittedly, for most of this time, this has been more of a hobby pursuit, but if I really want to develop the skill, I need more specific, even if still modest, learning goals. This is poor metacognitive planning.

Then there is how I track my progress. I am sad to say I have taken pride in the number of XP points (virtual points within Duolingo) I have accrued and the number of modules I have crossed off. They are easy to count, but this does not really assess my proficiency with the German language accurately. This is poor metacognitive monitoring of my learning.

Within the story modules, I am tentative and find myself relying too much on being able to hover over the words to see the definition before answering the comprehension questions. Why do I find it hard to commit to an answer, right or wrong, and learn from it? It feels hard, but as I tell my students, this is how you know you are learning. I am relying on a lower quality strategy because it feels good.

Acknowledging the Same Struggles

So, each time I bring up metacognition with my students, I am faced with the reality of my struggles with it, as demonstrated by the pitfalls in my German language practice. Thus, I teach about metacognition, not as an expert who has it all figured out, but rather as one who is, perhaps, further along the path. This is humbling. So, what can I do with this struggle? Can I really engage my students in their metacognitive growth if I am struggling with my own metacognitive growth? Yes! But how I go about it matters.

If I ignore talking about metacognition altogether, then I might avoid feeling uncomfortable about my failings with it. But I would not likely grow myself nor help my students grow metacognitively. If I pretend I have it all figured out, then I risk being found-out, losing my credibility, and sabotaging my students’ potential metacognitive growth.

However, if embrace my struggles with metacognition and am honest about them with my students, then I might be able to grow myself while I also help my students. There are at least two mechanisms for positive impact, acknowledging my similarity to my students and providing my students a concrete model of metacognitive growth in practice.

When I accept that I am like my students and my students are like me in struggling with metacognitive practice and growth (e.g., my German language studies), I gain a more complete view of my students. I can no longer view them as just lazy, unmotivated, or lacking in work ethic. Instead I can see sincere effort and a desire to learn and do well in classes, in spite of less effective learning behaviors. When I see my students in this way, I have a better attitude when I interact with them. This enables me to authentically praise the positive aspects of their learning behavior and to more gently challenge the less effective aspects they are relying on. It can move our interaction from a place of discouragement to one of encouragement and can help students to view their ability to grow into the learning challenge before them. When I recognize that my students have similar barriers to metacognitive growth as I do, I am able to be more compassionate and supportive as I help them face the challenges they experience in their learning.

Points of Connection

Sharing my own metacognitive struggles, e.g., with my German language practice, can provide a point of connection with my students. Students can have a hard time identifying with their instructors, viewing us as experts with experiences far removed from theirs. It is heartening to see students warm up to me and talk more openly and honestly about their approaches to learning when I have shared elements of my struggles with learning German. Suddenly, the relational distance between us shrinks because I have a present learning experience, concurrent with theirs, that they can readily identify with. Such authentic connections build trust and a foundation for a relationship, which can lead to further support and processing of their learning experiences.

Beyond forging an authentic connection, I can also constructively model of the effortful and continual path to becoming a more skillful learner, i.e., metacognitive growth. Sharing my critiques of my German language practice can demonstrate metacognitive evaluation of my learning processes and my openness to ongoing refinement. However, metacognitive growth does not stop with recognizing ineffective or less effective learning strategies. It requires doing something about it, enacting a productive change. For example, I could share a more refined and specific goal – such as, wanting to be able to engage in pleasantries and make small talk in German – which also helps direct my practice and how I monitor my progress.

How can this look within a specific class? This winter I have been teaching computer programming, and I have found it useful with a few students to draw analogies between my language practice and working towards proficiency with programming concepts. Becoming conversant in German requires more than just knowing German grammar rules, e.g., declensions for accusative cases. I must practice using it in conversation, that is, applying it. Similarly, to become proficient with programming I must know how to write conditional statements and loops, but I also must know how to apply them in various ways to accomplish a specified task – I have to practice applying the concepts. I was trying to model the need to align learning strategies with specific learning goals.

In summary, if I can identify with my students, I can better help them with their metacognitive growth. It helps me to be more gentle and supportive in my desire to see them grow metacognitively. It can also can help my students connect with me and see that they too can persist in their metacognitive growth when I am forthright with my metacognitive shortcomings. Being authentic matters and it can help me do what I think is the most important teaching that I do, helping my students become better learners. These are enduring lessons that can help them be successful throughout their lives, even if they forget the content that I was teaching!


How do you know you know what you know?

by Patrick Cunningham, Ph.D., Rose-Hulman Institute of Technology

Metacognition involves monitoring and controlling one’s learning and learning processes, which are vital for skillful learning. In line with this, Tobias and Everson (2009) detail the central role of accurate monitoring in learning effectively and efficiently. Metacognitive monitoring is foundational for metacognitive control through planning for learning, selecting appropriate strategies, and evaluating learning accurately (Tobias & Everson, 2009).

Hierarchy of Metacognitive Control, with Monitoring Knowledge at the bottom, followed by Selecting Strategies, Then Evaluating Learning, with Planning at the top

Figure 1 – Hierarchy of metacognitive regulatory processes. Adapted from Tobias and Everson (2009).

Unfortunately, students can be poor judges of their own learning or fail to engage in the judging of their learning and, therefore, often fail to recognize their need for further engagement with material or take inappropriate actions based on inaccurate judgements of learning (Ehrlinger & Shain, 2014; Winne and Nesbit, 2009). If a student inaccurately assesses their level of understanding, they may erroneously spend time with material that is already well known or they may employ ineffective strategies, such as a rehearsal strategy (e.g., flash cards) to build ROTE memory when they really need to implement an elaborative strategy (e.g., explaining the application of concepts to a new situation) to build richer integration with their current knowledge. This poor judgement extends to students’ perceptions of the effectiveness of their learning processes, as noted in the May 14th post by Sabrina Badali, Investigating Students’ Beliefs about Effective Study Strategies[. There Badali found that students were more confident in using massed practice over interleaved practice even though they performed worse with massed practice.

Fortunately, we can help our students to develop more accurate self-monitoring skills. The title question is one of my go-to responses to student claims of knowing in the face of poor performance on an assignment or exam. I introduced it in my April 4th blog post, Where Should I Start with Metacognition? It gently, but directly asks for evidence for knowing. In our work on an NSF grant to develop transferable tools for engaging students in their metacognitive development, my colleagues and I found that students struggle to cite concrete and demonstrable (i.e., objective) evidence for their learning (Cunningham, Matusovich, Hunter, Blackowski, and Bhaduri, 2017). It is important to gently persist. If a student says they “reviewed their notes” or “worked many practice problems,” you can follow up with, “What do you mean by review your notes?” or “Under what conditions were you working the practice problems?” The goal is to learn more about the students’ approach while avoiding making assumptions and helping the student discover any mismatches.

We can also spark monitoring with pedagogies that help students accurately uncover present levels of understanding (Ehrlinger & Shain, 2014). Linda Nilson (2013) provides several good suggestions in her book Creating Self-Regulated Learners. Retrieval practice takes little time and is quite versatile. Over a few minutes a student recalls all that they can about a topic or concept, followed by a short period of review of notes or a section of a book. The whole process can be done individually, or as individual recall followed by pair or group review. Things that are well-known are present with elaborating detail on the list. Less well-known material is present, but in sparse form. Omissions indicate significant gaps in knowledge. The practice is effortful, and students may need encouragement to persist with it.

I have used retrieval practice at the beginning of classes before continuing on with a topic from the previous day. It can also be employed as an end-of-class summary activity. I think the value added is worth the effort. Because of its benefits and compactness, I also encourage students to use retrieval practice as a priming activity before regular homework or study sessions. Using it in class can also lower students’ barriers to using it on their own, because it makes it more familiar and it communicates the value I place on it.

Nilson (2013) also offers “Quick-thinks” and Think Aloud problem -solving. “Quick-thinks” are short lesson breaks and can include “correct the error” in a short piece of work, “compare and contrast”, “reorder the steps”, or other activities. A student can monitor their understanding by comparing to the instructor’s answer or class responses. Think Aloud problem-solving is a pair activity where one student talks through their problem-solving process while the other student listens and provides support, when needed, for example, by prompting the next step or asking a guiding question. Students take turns with the roles. A student’s fluency in solving the problem or providing support indicates deeper learning of the material. If the problem-solving or the support are halting and sparse, then those concepts are less well-known by the student. As my students often study in groups outside of class, I recommend that they have the person struggling with a problem or concept talk through their thinking out loud while the rest of the group provides encouragement and support.

Related to Think Alouds, Chiu and Chi (2014) recommend Explaining to Learn. A fluid explanation with rich descriptions is consistent with deeper understanding. A halting explanation without much detail uncovers a lack of understanding. I have used this in various ways. In one form, I have one half of the class work one problem and the other half work a different problem or a variant of the first. Then I have them form pairs from different groups and explain their solutions to one another. Both students are familiar with the problems, but they have a more detailed experience with one. I also often use this as I help students in class or in my office. I ask them to talk me through their thinking up to the point where they are stuck, and I take the role of the supporter.

The strategies above provide enhancements to student learning in their own right, but they also provide opportunities for metacognitive monitoring – checking their understanding against a standard or seeking objective evidence to gauge their level of understanding. To support these metacognitive outcomes I make sure to explicitly draw students’ attention to the monitoring outcomes when I use pedagogies to support monitoring. I am also transparent about this purpose and encourage students to seek better evidence on their own, so they can truly know what they know.

As you consider adding activities to your course that support accurate self-assessment and monitoring, please see the references for further details. You may also want to check out Dr. Lauren Scharff’s post “Know Cubed” – How do students know if they know what they need to know? In this post Dr. Scharff examines common causes of inaccurate self-assessment and how we might be contributing to it. She also offers strategies we can adopt to support more accurate student self-assessment. Let’s help our student generate credible evidence for knowing the material, so they can make better choices for their learning!

References

Chiu, J. L. & Chi, M. T. H.  (2014). Supporting Self-Exlanation in the Classroom. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.). Applying science of learning in education: Infusing psychological science into the curriculum. Retrieved from the Society for the Teaching of Psychology web site: http://teachpsych.org/ebooks/asle2014/index.php

Cunningham, P., & Matusovich, H. M., & Hunter, D. N., & Blackowski, S. A., & Bhaduri, S. (2017), Beginning to Understand Student Indicators of Metacognition.  Paper presented at 2017 ASEE Annual Conference & Exposition, Columbus, Ohio. https://peer.asee.org/27820

Ehrlinger, J. & Shain, E. A.  (2014). How Accuracy in Students’ Self Perceptions Relates to Success in Learning. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.). Applying science of learning in education: Infusing psychological science into the curriculum. Retrieved from the Society for the Teaching of Psychology web site: http://teachpsych.org/ebooks/asle2014/index.php

Nilson, L. B. (2013). Creating Self-Regulated Learners: Strategies to Strengthen Students’ Self-Awareness and Learning Skills. Stylus Publishing: Sterling, VA.

Tobias, S. & Everson, H. (2009). The Importance of Knowing What You Know: A Knowledge Monitoring Framework for Studying Metacognition in Education. In Hacker, D., Dunlosky, J., & Graesser, A. (Eds.) Handbook of Metacognition in Education. New York, NY: Routledge, pp. 107-127.

Winne, P. & Nesbit, J. (2009). Supporting Self-Regulated Learning with Cognitive Tools. In Hacker, D., Dunlosky, J., & Graesser, A. (Eds.) Handbook of Metacognition in Education. New York, NY: Routledge, pp. 259-277.



Setting Common Metacognition Expectations for Learning with Your Students

by Patrick Cunningham, Ph.D., Rose-Hulman Institute of Technology

We know that students’ prior subject knowledge impacts their learning in our courses. Many instructors even give prior knowledge assessments at the start of a term and use the results to tailor their instruction. But have you ever considered the impact of students’ prior knowledge and experiences with learning on their approaches to learning in your course? It is important for us to recognize that our students are individuals with different expectations and learning preferences. Encouraging our students’ metacognitive awareness and growth can empower them to target their own learning needs and establish common aims for learning.

image of target with four colored arrows pointed at the center

Among other things, our students often come to us with having experienced academic success using memorization and pattern matching approaches to material, i.e., rehearsal strategies. Because they have practiced these approaches over time and have gotten good grades in prior courses or academic levels, these strategies are firmly fixed in their learning repertoire and are their go-to strategies. Further, when they get stressed academically, they spend more time employing these strategies – they want more examples, they re-read and highlight notes, they “go-over” solutions to old exams, they memorize equations for special cases, and more. And many of us did too, when we were in their shoes.

However, rehearsal strategies only result in shorter-term memory of concepts and surface-level understanding. In order to build more durable memory of concepts and deeper understanding, more effortful strategies are needed. Recognizing this and doing something about it is metacognitive activity – knowing about how we process information and making intentional choices to regulate our learning and learning approaches. One way to engage students in building such metacognitive self-awareness and set common expectations for learning in your course starts with a simple question,

‘What does it mean to learn something?”

I often ask this at the start of a course. In an earlier post, Helping Students Feel Responsible for Their Learning, I introduced students’ common responses. Learning something, they say, means being able to apply it or explain it. With some further prompting we get to applying concepts to real situations and explaining material to a range of people, from family member to bosses, to cross-functional design teams. These are great operational definitions of learning, and I affirm my students for coming up with them.

Then I go a step further, explaining how transferring to new applications and explaining to a wide range of audiences requires a richly interconnected knowledge framework. For our knowledge to be useful and available, it must be integrated with what we already know.

So, I tell my students, in this class we will be engaging in activities to connect and organize our knowledge. I also try to prepare my students for doing this, acknowledging it will likely be different than what they are used to. In my engineering courses students love to see and work more and more example problems – i.e., rehearsal. Examples are good to a point, particularly as you engage a new topic, but we should be moving beyond just working and referencing examples as we progress in our learning. Engaging in this discussion about learning helps make my intentions clear.

I let my students know that as we engage with the material differently it will feel effortful, even hard at times. For example, I ask my students to come up with and explore variations on an example after we have solved it. A good extension is to have pairs working different variations explain their work to each other. Other times I provide a solution with errors and ask students to find them and take turns explaining their thinking to a neighbor. In this effortful processing, they are building connections. My aim is to grow my students’ metacognitive knowledge by expanding their repertoire of learning strategies and lowering the ‘activation energy’ to using these strategies on their own. It is difficult to try something new when there is so much history behind our habitual approaches.

Another reason I like this opening discussion, is that it welcomes opportunities for metacognitive dialogue and ongoing conversations about metacognition. I have been known to stop class for a “meta-moment” where we take time to become collectively more self-aware, recognizing growth or monitoring our level of understanding. The discussion about what it means to learn something also sets a new foundation and changes conversations about exam, quiz, and homework preparations and performance. You might ask, “How did you know you knew the material?” Instead of suggesting “working harder” or “studying more”, we can talk meaningfully about the context and choices and how effective or ineffective they were.

Such metacognitive self-examination can be challenging for students and even a little uncomfortable, especially if they exhibit more of a fixed mindset toward learning. It may challenge their sense of self, their identity. It is vital to recognize this. Some students may exhibit resistance to the conversation or to the active and constructive pedagogies you employ. Such resistance is challenging, and we must be careful with our responses. Depersonalizing the conversation by focusing on the context and choices can make it feel less threatening. For example, if a student only studied the night or two before an exam, instead of thinking they are lazy or don’t care about learning, we can acknowledge the challenge of managing competing priorities and ask them what they could choose to do differently next time. We need to be careful not to assume too much, e.g., a student is lazy. Questions can help us understand our students better and promote student self-awareness. For more on this approach to addressing student resistance see my post on Addressing Student Resistance to Engaging in their Metacognitive Development.

Students’ prior learning experiences impact how they approach learning in specific courses. Engaging students early in a metacognitive discussion can help develop a common set of expectations for learning in your course, clarifying your intentions. It also can open doors for metacognitive dialogue with our students; one-on-one, in groups, or as a class. It welcomes metacognition as a relevant topic into the course. However, as we engage in these discussions, we must be sensitive to our students, respectfully and gently nudging their metacognitive growth. Remember, this is hard work and it was (and often still is) hard for us too!

Acknowledgements This blog post is based upon metacognition research supported by the National Science Foundation under Grant Nos. 1433757 & 1433645. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.


Addressing Student Resistance to Engaging in their Metacognitive Development

by Patrick Cunningham, Ph.D., Rose-Hulman Institute of Technology

You may be familiar with the quip,

“You can lead a horse to water, but you can’t make it drink.”

Perhaps you can’t, however, my grandfather argued, “but you can put salt in its oats!” We can advise students on the importance of setting specific learning goals and accurately monitoring both their level of understanding and their learning processes. And I believe we should teach them how to be more metacognitive, but we can’t make them do any of it. Nor do I think we should. Students should own their learning. They should experience agency and efficacy in their learning (i.e., they should own their learning). But I can put “salt in their oats!” In this post I want to explore our role, as educators, in encouraging and providing opportunities for students to grow their metacognitive awareness and skills (i.e., our role as purveyors of “learning salt”).

I recently found the book Why Students Resist Learning (Tolman & Kremling, 2017). While written about resistance to learning in general, it is relevant to student resistance to engaging in their metacognitive development. Student resistance is complex with multiple interacting components. In my reading so far I have been challenged by two overarching themes. First, student resistance isn’t just about students. It’s about us, the educators, too. Our interactions with students can exacerbate or ameliorate student resistance. Second, student resistance is a symptom of deeper issues, not a student characteristic itself. For example, a student may be trying to preserve their sense of self and fear admitting a learning deficiency or a student may have had prior experiences that affirm surface approaches to learning and therefore they resist the idea that they need strategies to develop deeper learning.

We, as educators, need to recognize and deal with our role in student resistance to metacognitive development. Our interactions with our students are largely influenced by our beliefs and attitudes about our students. My colleagues and I have sought to address this in the B-ACE framework for giving formative feedback in support of metacognitive development. The ‘B’ represents an attitude of Believing the best about students. When we prepare to give feedback, we are responding to what they have written or said, which may or may not be accurate or complete. Believing the best acknowledges that we have incomplete information and need to reserve judgement. This attitude embodies sincere curiosity and seeks understanding. The remaining letters represent actionable elements of feedback, Affirm-Challenge-Encourage. Implementing our belief in the best about our students, we should seek to authentically affirm positive behaviors and growth, however small. Then explore and seek to understand the broader contexts and details of their statements by asking questions. In this way, you can provide gentle challenge to think more deeply or to discover incongruities between learning goals and behaviors. Finally, close by encouraging them. Let your students know you believe in their abilities to become more skillful learners, with effort and perseverance. If you say it, make sure you mean it. You can also point them to potential strategies to consider. Let’s see how we can implement the B-ACE framework as “learning salt”.

In my teaching, I provide a variety of opportunities for my students to engage in their metacognitive development. At some point I ask something like, “What have you been doing differently since we last talked? How is it helping you be a more skilled and efficient learner?” One common type of response I get from engineering students is exemplified by:

“I am continuing to work practice problems to get ready for exams. I try to work through as many as I can. It works best for me.”

Okay. No change. I’m disappointed. First, I need to make sure I don’t assume they are just memorizing and pattern matching, i.e., relying on surface learning approaches. Or, if they are memorizing and pattern matching, I need to believe it is in honest effort to learn. Further, change is hard and they may be trusting what is familiar and comfortable, even if it isn’t the most effective and efficient. Now I need to ACE the rest of the feedback.

[Affirm] Good! You are taking intentional steps to prepare for your exams. [Challenge] How do you know it works best? What other strategies have you tried? [Encourage] Keep being intentional about your learning. You may want to try recall-and-review, explaining-to-learn, or creating your own problems to measurably test your understanding.

There will be a difference between written feedback and oral feedback, but notice that both include an opening for further interaction and prompt metacognitive reflection. In a face-to-face dialogue, there might be other questions depending on the responses, such as, “How are you working the problems? What will happen if the problem is asked in a way that is different from your practice?” In written feedback, I may want to focus on one question instead of a list, so as not to overwhelm the student with challenge. Notice that these questions are seeking additional information and pointing the student to make connections. Still the student may or may not take my suggestions to try something different. However, I argue this type of response is “saltier” than just settling for this response or telling them directly their approach isn’t as effective, and it may lead to further dialogue later on.

In a recent post, Aaron Richmond questions if well-intentioned metacognitive instruction can, in specific cases, be unethical (Richmond, 2018). John Draeger provides counterpoint in his response, but acknowledges the need to recognize and address possible adverse reactions to metacognitive instruction (Draeger, 2018). The B-ACE feedback framework both encourages student metacognition and is an expression of Ethical Teaching, summarized by Richmond (Richmond, 2018). It acknowledges students’ autonomy in their learning, seeks to avoid harm and promote their well-being, and strives to be unbiased and authentic. Further, it can address adverse reactions, by helping students to discover the deeper issues of their reaction.

In caring for our students, we want to see them grow. They aren’t always ready. Prochaske, Norcross, and DiClemente (1994) delineate six stages of change, and it starts with the lack of awareness and willingness to change. Change takes time an effort. Even so, let’s commit to making interactions with our students “salty”! Let’s gently, quietly, and persistently encourage them in their metacognitive development.

References

Prochaska, J., Norcross, J., & DiClemente, C. (1994). Changing for Good. New York: Harper Collins.

Tolman, A. & Kremling, J. (Eds.). (2017). Why Students Resist Learning: A Practical Model for Understanding and Helping Students. Sterling, VA: Stylus.

Acknowledgements

This blog post is based upon metacognition research supported by the National Science Foundation under Grant Nos. 1433757 & 1433645. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.


Helping Students Feel Responsible for Their Learning

by Patrick Cunningham, Ph.D., Rose-Hulman Institute of Technology

“Dr. C, you really expect your students to do a lot!” I quickly replied, “Yes!” We then engaged in a discussion of things only students can do for their learning. How can we help more of our students recognize their responsibility for their learning? Three strategies I employ include explicit and direct instruction, questioning for self-discovery, and in-class opportunities to practice new learning strategies. Each of these strategies direct students’ focus to things under their control.

Helping our students recognize and embrace their responsibility for their learning requires metacognitive activity. Specifically, it requires building metacognitive knowledge of persons and strategies and engaging in metacognitive regulation through planning for and monitoring learning experiences. Direct instruction and in-class learning strategy practice can expand metacognitive knowledge. Questioning for self-discovery can facilitate students metacognitive monitoring and planning for subsequent learning experiences.

For explicit and direct instruction, I start a discussion within the first two days of class by asking, “What does it mean to learn something?” Most responses include applying and explaining concepts. Good answers, but I press for more depth. In turn I respond, “Apply to what? Explain to whom?” Learning something, they say, means being able to apply concepts to real circumstances. My engineering students also come up with a variety of people or groups of people to explain things to: their grandmother, family members, a cross-functional design team, a boss, peer engineers, marketing/sales professionals, or even customers. These answers are good operational definitions of learning. Next, I talk to my students about the knowledge frameworks that underlie these abilities.

Illustration of Knowledge Frameworks

In order to apply concepts to real and diverse circumstances and to explain concepts effectively to a range of audiences we must have many routes to and between the elements of our knowledge and a logical structure of the information. That is, our knowledge frameworks must be well populated, richly interconnected, and meaningfully organized (Ambrose et al., 2010). However, as novices in an area, we start with sparsely populated and isolated knowledge frameworks. I then share with students that they are the only ones who can construct their knowledge frameworks. The population and interconnection of elements depends on what they individually do with the material, in class and out of class. As the instructor, I can create opportunities and experiences for them, but I cannot build their knowledge frameworks for them. Students are responsible for the construction work.

For self-discovery I use guiding questions to help students articulate learning goals, combat the Illusion of Comprehension, and make cause-and-effect linkages between their learning behaviors and outcomes. I may ask, “What goals do you have for your homework/study sessions?” Students often focus on getting assignments done or being “ready” for exams, but these are not directly learning goals. It is helpful here to ask what they want or need to be able to do with the information. Eliciting responses such as: “Apply ____ to ____. Create a ____ using ____. Explain ____.” Now we can ask students to put the pieces together. How does just “getting the homework done” help you know if you can apply/create/explain? We are seeking to help students surface incongruities in their own behavior, and these incongruities are easier to face when you discover them yourself rather than being told they are there.

A specific incongruity that many students struggle with is the Illusion of Comprehension (Svinicki, 2004), which occurs when students confuse familiarity with understanding. It often manifests itself after exams as, “I knew the material, I just couldn’t show you on the exam.” My favorite question for this is, “How did you know you knew the material?” Common responses include looking over notes or old homework, working practice exams, reworking examples and homework problems. But what does it mean to “look over” prior work? How did you work the practice exam? How did you elaborate around the concepts so that you weren’t just reacting to cues in the examples and homework problems? What if the context of the problem changes? It is usually around this point that students begin to realize the mismatch between their perceptions of deep understanding and the reality of their surface learning.

Assignment or exam wrappers are also good tools to help students work out cause-and-effect linkages between what they do to learn material and how they perform. In general, these “wrappers” ask students to reflect on what they did to prepare for the assignment or exam, process instructor feedback or errors, and adjust future study plans.

It is important, once we encourage students to recognize these incongruities, that we also help direct students back to what they can do to make things better. I direct conversations with my students to a variety of learning strategies they can employ, slanted towards elaborative and organizational strategies. We talk about such things as making up problems or questions on their own, explaining solutions to friends, annotating their notes summarizing key points, or doing recall and reviews (retrieval practice).

However, I find that telling them about such strategies often isn’t enough. We trust what is familiar and comfortable – even ineffective and inefficient learning strategies that we have practiced over years of prior educational experiences and for which we have been rewarded. So I implement these unfamiliar, but effective and efficient strategies into my teaching. I want my students to know how to do them and realize that they can do them in their outside of class study time as well.

One way I engage students with new strategies is through constructive review prior to exams. We start with a recall and review exercise. I have students recall as many topics as they can in as much detail as they can for a few minutes – without looking anything up. Then I have students open their notes to add to and refine their lists. After collectively capturing the key elements, I move to having pairs of students work on constructing potential questions or problems for each topic. I also create a discussion forum for students to share their problems and solutions – separately. As they practice with each others’ problems, they can also post responses and any necessary corrections.

In concert, direct instruction, questioning for self-discovery, and in-class opportunities to practice new learning strategies can develop our students’ sense of responsibility for their learning. It even can empower them by giving them the tools to direct their future learning experiences. In the end, whether they recognize it or not, students are responsible for their learning. Let’s help them embrace this responsibility and thrive in their learning!

References

Ambrose, S., Bridges, M., DiPietro, M., Lovett, M., & Norman, M. (2010) How Learning Works: 7 Research-Based Principles for Smart Teaching. San Francisco, CA: Jossey-Bass.

Svinicki, M. (2004). Learning and Motivation in the Postsecondary Classroom. San Francisco, CA: John Wiley & Sons.

Acknowledgements

This blog post is based upon metacognition research supported by the National Science Foundation under Grant Nos. 1433757 & 1433645. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Next Blog-post:

Overcoming student resistance to engaging in their metacognitive development.


Where Should I Start With Metacognition?

by Patrick Cunningham, Rose-Hulman Institute of Technology

Have you ever had a student say something like this to you? “I know the material, I just couldn’t show you on the exam.” How do you respond?

I have heard such comments from students and I think it exemplifies two significant deficiencies.

First, students are over-reliant on rehearsal learning strategies. Rehearsal is drill-and-practice or repetitive practice aimed at memorization and pattern matching. Such practices lead to surface learning and shallow processing. Students know facts and can reproduce solutions to familiar problems, but struggle when the problem looks different. Further, when faced with real-world situations they are often not even able to identify the need for the material let alone apply it. Only knowing material by rote is insufficient for fluency with it. For example, I can memorize German vocabulary and grammar rules, but engaging someone from Germany in a real conversation requires much more than just knowing words and grammar.

Second, students are inaccurate in their self-assessments of their learning, which can lead to false confidence and poor learning choices (Ehrlinger & Shain 2014). Related to this, I have developed a response to our hypothetical student. I ask, “How do you know you know the material?” In reply, students commonly point to looking over notes, looking over homework, reworking examples or homework problems, or working old exams – rehearsal strategies. I often follow up by asking how they assessed their ability to apply the material in new situations. This often brings a mixture of surprise and confusion. I then try to help them discover that while they are familiar with the concepts, they are not fluent with them. Students commonly confuse familiarity with understanding. Marilla Svinicki (2004) calls this the Illusion of Comprehension, and others have called it the illusion of fluency. Continuing the language example, I could more accurately test my knowledge of German by attempting and practicing conversations in German rather than just doing flashcards on vocabulary and grammar rules. Unless we employ concrete, demonstrable, and objective measures of our understanding, we are prone to inaccurate self-assessment and overconfidence. And, yes, we and our students are susceptible to these maladies. We can learn about and improve ourselves as we help our students.

Addressing these two deficiencies can be a good place to start with metacognition. Metacognition is the knowledge and regulation of our thinking processes. Our knowledge of strategies for building deeper understanding and our awareness of being susceptible to the illusion of comprehension are components of metacognitive knowledge. Our ability to regulate our thinking (learning) and apply appropriate learning strategies is critically dependent on accurate self-assessment of our level of understanding and our learning processes, specifically, in metacognitive monitoring and evaluation. So how can we support our students’ metacognitive development in these areas?

To help our students know about and use a broader range of learning strategies, we can introduce them to new strategies and give them opportunities to practice them. To learn more deeply, we need to help students move beyond rehearsal strategies. Deeper learning requires expanding and connecting the things we know, and is facilitated by elaborative and organizational learning strategies. Elaboration strategies aid the integration of knowledge into our knowledge frameworks by adding detail, summarizing, and creating examples and analogies. Organizational strategies impose structure on material and help us describe relationships among its elements (Dembo & Seli 2013).

We can help our students elaborate their knowledge by asking them to: 1) explain their solutions or mistakes they find in a provided solution; 2) generate and solve “what-if” scenarios based on example problems (such as, “what if it changed from rolling without slipping to rolling with slipping”); and 3) create and solve problems involving specific course concepts. We can help our students discover the structure of material by asking them to: 1) create concept maps or mind maps (though you may first need to help them learn what these are and practice creating them); 2) annotate their notes from a prior day or earlier in the period; and 3) reorganize and summarize their notes. Using these strategies in class builds students’ familiarity with them and improves the likelihood of students employing them on their own. Such strategies help students achieve deeper learning, knowing material better and making it more accessible and useable in different situations (i.e., more transferable). For example, a student who achieved deeper learning in a system dynamics course will be more likely to recognize the applicability of a specific dynamic model to understand and design a viscosity experiment in an experiment design class.

To help our students engage in more accurate self-assessment we can aid their discovery of being susceptible to inaccurate self-perceptions and give them opportunities to practice strategies that provide concrete, demonstrable, and objective measures of learning. We can be creative in helping students recognize their propensity for inaccuracy. I use a story about an awkward conversation I had about the location of a youth hostel while travelling in Germany as an undergraduate student. I spent several minutes with my pocket dictionary figuring out how to ask the question, “Wissen Sie wo die Jugendherberge ist?” When the kind stranger responded, I discovered I was nowhere near fluent in German. It takes more than vocabulary and grammar to be conversant in the German language!

We can help our students practice more accurate self-assessment by asking them to: 1) engage in brief recall and review sessions (checking completeness and correctness of their recalled lists); 2) self-testing without supports (tracking the time elapsed and correctness of solution); 3) explaining solutions (noticing the coherence, correctness, and fluency of their responses); and 4) creating and solving problems based on specific concepts (again, noting correctness of their solution and the time elapsed). Each of these strategies creates observable and objective measures (examples noted in parentheses) capable of indicating level of understanding. When I have students do brief (1-2 minute) recall exercises in class, I have them note omissions and incorrect statements as they review their notes and compare with peers. These indicate concepts they do not know as well.

Our students are over-reliant on rehearsal learning strategies and struggle to accurately assess their learning. We can help our students transform their learning by engaging them with a broader suite of learning strategies and concrete and objective measures of learning. By starting here, we are helping our students develop transferable metacognitive skills and knowledge, capable of improving their learning now, in our class, and throughout their lives.

References

Ehrlinger, J., & Shain, E. A. (2014). How Accuracy in Students’ Self Perceptions Relates to Success in Learning. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.). Applying science of learning in education: Infusing psychological science into the curriculum. Retrieved from the Society for the Teaching of Psychology web site: http://teachpsych.org/ebooks/asle2014/index.php

Svinicki, M. (2004). Learning and motivation in the postsecondary classroom. San Francisco, CA: John Wiley & Sons.

Dembo, M. & Seli, H. (2013). Motivation and learning strategies for college success: A focus on self-regulated learning (4th ed.). New York, NY: Routledge.


Am I responsible for engaging my students in learning how to learn?

by Patrick Cunningham, Rose-Hulman Institute of Technology

I’m a mechanical engineering professor and since my first teaching experience in graduate school I’ve wanted my students to walk away from my classes with deep learning. Practically, I want my students to remember and appropriately apply key concepts in new and different situations, specifically while working on real engineering problems.

In my early years of teaching, I thought if I just used the right techniques, exceptional materials, the right assignments, or the right motivational contexts, then I would get students to deeper learning. However, I still found a disconnect between my pedagogy and student learning. Good pedagogy is important, but it isn’t enough.

On sabbatical 4 years ago, I sat in on a graduate-level cognitive processes course that helped explain this disconnect. It helped me realize student learning is principally determined by the student. What the student does with the information determines the quality of their learning. How they use it. How they apply it. How they practice it. How engaged they are with it. I can provide a context conducive to deeper learning, but I cannot build the foundational and rich knowledge frameworks within the students’ minds. Only the students can do this. In other words, while we, as educators, are important in the learning process, we are not the primary determinants of learning, students are. Students are responsible for their learning, but they don’t universally realize it.

So, how do we help students realize their responsibility for learning? It requires presenting explicit instruction on how learning really works, providing practice with effective approaches to learning, and giving constructive feedback on the learning process (Kaplan, et al. 2013). When left unchecked, flawed conceptions of the learning process at best are allowed to persist and at worst are reinforced. Even when we do not explicitly speak to the learning process with our students, we say something about it. For example, when our primary mode of instruction is walking students through example problems, we may reinforce the belief that learning is about memorizing the process rather than connecting concepts to different contexts and knowing when to apply one concept versus another concept. Sometimes we do speak to students about the learning process, but we offer vague and unhelpful advice, such as, “work more problems”, or “study harder”. Such advice doesn’t point students to specific strategies instrumental in building more interconnected knowledge frameworks (e.g., elaborative and organizational strategies) (Dembo & Seli 2013) and can reinforce surface-level memorization and pattern matching approaches.

Because our teaching doesn’t guarantee student learning, because we desire our students develop deep and meaningful learning, and since we always say something about the learning process (intentionally or not), we, as educators, are responsible for engaging our students in developing as learners. We should be explicitly engaging our students in learning about and regulating their learning processes, i.e., developing their metacognitive skills.

As I advocate for our responsibility to aid students’ in learning how to learn, some common reactions include:

  1. Don’t people figure out how to learn naturally?
  2. Shouldn’t students already do this on their own?
  3. I don’t know metacognition and the science of learning like I know my specialty area.

Don’t we figure out how to learn naturally? Yes, learning is a natural process, but, no, we do not naturally develop deep and efficient approaches to learning – anymore than we naturally develop the skill of a concert musician or any other highly refined practice. Shouldn’t students already do this on their own? Ideally, yes, but the reality is most students’ prior learning experiences have led to ingrained surface learning habits.

Prior learning experiences condition how we go about learning, along with contextual factors, such as the guidance of parents and teachers. In general, students think they are good at learning and don’t see a need to change their approaches. They continue to get good grades using memorization and pattern matching – often cramming for exams – while lacking long-term memory of concepts and the ability to transfer these concepts to real applications. As long as our courses allow students to get good grades (their measures of “success”) with surface learning habits, such views will persist. Deep learning includes memorizing, i.e., knowing, things, but such durable and transferable learning requires much more than just memorization. It takes effortful intellectual engagement with concepts, exploring connections and sorting out relationships between concepts, and accurate self-assessment. Such approaches can be learned, and a few students do. More can if we explicitly guide them. Our students are not lazy, rather they are misguided by prior experiences. Let’s guide them!

I don’t know metacognition and the science of learning like I know my specialty area. Yes, it is important to be knowledgeable and proficient with what we teach. While we have done much with the content in our specialties, we have limited training, if any, training on metacognition (the knowledge and regulation of our thinking/learning processes) and the science of learning. However, as educators trying to improve our craft, shouldn’t we also be students of learning? This can start small and continue as a career-long pursuit. We can always improve! You also likely know more than you think you do. Your self-selection into advanced studies and a college teaching career are not an accident. As part of the select group of academics, you are likely already metacognitively skilled, even if you don’t realize it. Start small, with one thing. Learn about it and practice or recognize it in your own life. For example, peruse a copy of Linda Nilson’s Creating Self-Regulated Learners or James Lang’s Small Teaching, or attend a teaching workshop that sparks your interest. Then, confidently share it with your students and engage them in it as you teach your content. Your authentic experience with it demonstrates its relevance and importance. Once you have become comfortable with this, add another element. Over time, you will build practical expertise about the learning process. Along the way you will likely learn about yourself and make sense of your past (and present) learning experiences. I did!

Need help? Look for my next post, “Where should I start with metacognition?”

Acknowledgements

This blog post is based upon metacognition research supported by the National Science Foundation under Grant Nos. 1433757, 1433645, & 1150384. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. I also extend my gratitude to my collaborating researchers, Dr. Holly Matusovich and Ms. Sarah Williams, for their support and critical feedback.

References

Dembo, M. & Seli, H. (2013). Motivation and Learning Strategies for College Success: A Focus on Self-Regulated Learning (4th ed.). New York, NY: Routledge.

Kaplan, M., Silver, N., Lavaque-Manty, D., Meizlish, D. (Eds.). (2013). Using Reflection and Metacognition to Improve Student Learning. Sterling, VA: Stylus.