Interest Beyond the Ivory Tower

by David Westmoreland, U.S. Air Force Academy*

I recently had a speaking engagement at a local pub which took an interesting turn related to metacognition. “Science on Tap” is a loosely organized program that takes place in cities around the United States, in which people with an interest in science can meet with a scientist to learn about current developments. The topic that I chose to cover was not current at all – in fact, it was a historical narrative set in England during the 1870s. The story revolved a public challenge to prove that the earth is a sphere, as opposed to being flat, which was published in the journal Scientific Opinion. The author of the challenge, John Hampden, was a biblical literalist who offered to match a wager up to £500 (over $30,000 in today’s dollars) that would be held by an independent party until that person determined whether the burden of evidence had been met. The bet was picked up by Alfred Russel Wallace, who used a simple demonstration involving nothing more than wooden stakes with flags, a telescope, and a surveyor’s level to win. Those interested in the details of the story can find them in Schadewald (1978).

My intent in presenting the story was to engage the audience in the process of scientific reasoning – rather than presenting Wallace’s solution, I challenged those sharing a table to come up with a convincing demonstration using the same tools that Wallace employed. They succeeded, converging on a common theme similar to the one that Wallace used. In the Q & A that followed, the audience was clearly more interested in questions about the nature of thinking than in historical details. What is happening when two people view the same evidence and come to opposite conclusions? How often does a person make a deliberate attempt to view evidence through the lens of another? When someone rejects data in order to retain a belief, has rationalism been abandoned? The discussion was lively, engaging, and ultimately had to be cut off as we ran out of time. For me, it drove home the point that metacognitive thinking is of broad interest, not relegated to the halls of the academy.

Reference

Robert Schadewald. 1978. He knew the earth is round, but his proof fell flat. Smithsonian Magazine 9 (April), 101-113.

* Disclaimer: The views expressed in this document are those of the authors and do not reflect the official policy or position of the U. S. Air Force, Department of Defense, or the U. S. Govt.


Metacognitive Skills and the Faculty

by Dave Westmoreland, U. S. Air Force Academy

While I applaud the strong focus on student development of metacognitive practices in this forum, I suspect that we might be overlooking an important obstacle to implementing the metacognitive development of our students – the faculty. Most faculty members are not trained how to facilitate the metacognitive development of students. In fact many are not aware of the need to help students develop metacognitive skills because explicit development of their own metacognitive skills didn’t occur to them when they were students.

I teach at a military institution in which the faculty is composed of about 60% military officers and 40% civilians. Since military faculty stay for three-year terms, there is an annual rotation in which about 20% of the entire faculty body is new to teaching. This large turn over poses an ongoing challenge for faculty development. Each year we have a week-long orientation for the new faculty, followed by a semester-long informal mentorship. Despite these great efforts, I believe that we need to do more when it comes to metacognition.

For example, in my department there is a strong emphasis on engaging students in the conceptual structure of science. As part of this training, we employ the exercise that I described in a previous blog (Science and Social Controversy – a Classroom Exercise in Metacognition”, 24 April 2014). With few exceptions, our new faculty, all of whom possess advanced degrees in science, struggle with the concepts as much as our undergraduates. It seems that the cognitive structure of science (the interrelation of facts, laws and theories) is not a standard part of graduate education. And without a faculty proficient in this concept, our goal of having students comprehend science as a way of knowing about the natural world will fail.

What is needed within faculty development is a more intentional focus on how faculty can develop their own metacognitive skills, and how they can support the metacognitive skill development of their students. A recent report by Academic Impressions reveals that, while virtually all institutions of higher education proclaim an emphasis on professional development, more than half of faculty perceive that emphasis to be little more than talk. Only ~ 42% of institutions give professional development a mission-critical status, and actively support professional development in their faculty and staff (Mrig, Fusch, & Cook, 2014). Highly effective institutions are proactive in directing professional development to meet emerging needs – perhaps this is where an emphasis on metacognition will take hold.
To that end, it is encouraging to see the initiative for a research study of metacognitive instruction on our own Improve with Metacognition site.

See https://www.improvewithmetacognition.com/researching-metacognition/ for the Call to Participate.

Reference

Mrig, A., Fusch, D, and Cook, P. 2014. The state of professional development in higher ed. http://www.academicimpressions.com/professional-development-md/?qq=29343o721616qY104


Breaking through the barriers to learning

by David Westmoreland, U.S. Air Force Academy*

Teachers of science increasingly find themselves entangled in social controversies. This is true for physicists teaching about the origin of matter, geologists discussing the age of the planet, biologists teaching evolution, and climatologists teaching about global warming. In most cases, the science is relatively clear, and there is little controversy within the scientific community.

In my field of biology, for example, a significant percentage of students enter the classroom with preconceived notions about the theory of evolution. Public perception of this field has changed little in the past 30 years. In the most recent poll, 42% of Americans rejected evolution outright, a figure that has fluctuated between 40 and 47% for more than 3 decades (Newport 2014). Among college-educated Americans, there is greater acceptance of evolution as valid science; in 2014, about 25% espoused a creationist perspective. Still, it is surprising that one-fourth of college-educated Americans reject evolution, given the expansive effort to incorporate evolutionary biology into public education and the positive presentation of evolution in the media.

Why? One possibility is that we have we have failed to use the right approach to overcome a socially derived obstacle to learning. In undergraduate biology courses, the concept of evolution is often introduced in concert with empirical evidence supporting it, with the expectation that students will be open to ideas that, in fact, they are resistant to learn.
My research on cadets at the Air Force Academy indicates a barrier to learning evolution by about 25% of students. I sampled 147 cadet volunteers who self-categorized as creationists (rejecting evolution), theistic evolutionists (acknowledging evolutionary change with some degree of divine influence) or atheistic evolutionists (acknowledging evolution by natural processes alone). Each student responded to surveys that quantified (a) their knowledge of the subject, and (b) their perspective on evolution as science, in addition to demographic information. The results are intriguing.

Knowledge Test Score

              Creationists         36               3.7A ± 0.38
Theistic evolutionists 75 6.2B ± 0.25
Atheistic evolutionists 36 6.3B ± 0.37

Despite having a similar educational background to the other groups, creationists’ knowledge scores were roughly half those of the other groups. The difference is statistically significant.

One might think that, if creationist students were more open to learning evolutionary concepts, their acceptance of evolution might rise. But think again – the correlation of knowledge and perception is not so clear. Knowledge is significantly related to acceptance for theistic and atheistic evolutionists, but not for creationists. For them, learning facts does not appear to influence perception.

This is where metacognition comes in. In a review of 26 research articles on undergraduates’ knowledge and acceptance of evolution, Lloyd-Strovas and Bernal (2012) concluded that acceptance is related to student understanding of the nature of science – that is, science as a cultural and intellectual endeavor. When students learn that science should not be regarded as a repository of absolute truth, but rather, an ongoing effort to understand and explain the natural world, the barrier to learning is breached. As emphasized by Lombrozo et al. (2008): “…Students may be more likely to accept evolution if they understand that a scientific theory is provisional but reliable, that scientists employ diverse methods for testing scientific claims, and that relating data to theory can require inference and interpretation.”

In other words, instructors must prepare the field before engaging students in social controversies. Otherwise, students are more likely to engage in social cognition – the tendency to form opinions on the basis of social identity (Bloom and Weisberg 2007). If an individual strongly identifies herself as belonging to a group that holds a common opinion on a topic, she is likely to express that opinion even in the absence of competent understanding of the subject. For such persons, empirical information is likely to be ignored due to a fundamental desire to reinforce a social network. Consider, for example, the strong relationship between political affiliation and skepticism about global warming.

College courses are no strangers to controversy. We often engage students in debate, and have them present and defend positions. What is missing, I think, is pushing our students to critically evaluate the processes they used to form the opinions in the first place.

References

Bloom, P., and D. S. Weisberg. (2007). Childhood origins of adult resistance to science. Science 316: 996-997.

Lloyd-Strovas, J. D., and X. E. Bernal. (2012). A review of undergraduate evolution education in U.S. universities: building a unifying framework. Evolution Education Outreach 5: 453–465.

Lombrozo, T., A. Thanukos, and M. Weisberg. (2008). The importance of understanding the nature of science for accepting evolution. Evolution Education Outreach 1: 290-298.

Newport, F. (2014, June 2). In U.S., 42% believe creationist view of human origins. Retrieved from http://www.gallup.com

* Disclaimer: The views expressed in this document are those of the authors and do not reflect the official policy or position of the U. S. Air Force, Department of Defense, or the U. S. Govt.


Science and Social Controversy – a Classroom Exercise in Metacognition

by David Westmoreland, U.S. Air Force Academy*

One of the many challenges for science educators is teaching about topics that are largely resolved in the scientific community, yet remain controversial in broader society.  Such topics often make students uncomfortable, and thus meet with resistance to learning (Johnson and Peeples 1987, Byford et al. 2009). When instructors present such topics as no longer under question, students are likely to perceive the teacher as strongly biased to one side of a controversy that they consider to be ongoing.

This conflict of perception arises partly from a lack of a meaningful understanding of how scientific thinking differs from the broader practices of everyday, social thinking.   I have found that explicit instruction on the difference between scientific and social thinking enables students to be more objective when learning about controversial subjects.  In turn, I am better able to break through socially derived barriers to learning (Clough 1994, Sinclair et al. 1997, Shipman et al. 2002).

I introduce this exercise as a metacognitive lab that attempts to answer the question “How do you know?”  I define metacognition for the students,as the effort to understand one’s own thought processes, in addition to understanding the thought processes used by others.   Students are split into small groups of 3-4 individuals seated to foster within-group discussion while minimizing between-group discussion.  Each group is presented with 4-5 of the “Truth” statements listed below.

Students are asked to proceed through each statement, imagining themselves as a person who takes the statement to be true.  What would that person give as his or her basis for accepting its truth?  From this, students compile on the board a “ways of knowing” list.  A typical list, paired with its corresponding “Truth” statement, is shown below.  It is not important that students identify these exact categories of knowledge.  The point of the exercise is to have students recognize that social thinking incorporates a wide variety of thought processes.

“Truth” statement

Typical “Way of Knowing” categories identified by students

Eggs are fragile. Personal experience
The nucleus, which occupies the interior of a cell, is smaller than the cell itself. Logic
Water freezes at 32 degrees F. AuthorityPersonal experience (often listed, then retracted after students realize they have never personally measured the temperature of freezing water)
Everyone has a moral sense. Desire for the statement to be trueAuthorityIntuition
I don’t trust him/her.  (Having just met the person.) Intuition
A higher power is punishing America for its acceptance of sinful lifestyles. AuthorityDesire for the statement to be trueDirect revelation
If a = b and b + 1 = 5, a = 4. Logic
There are ten fundamental rules that a higher power instructs us to live by. Direct revelation (if Moses)Authority (everyone else)
President Obama does not have a valid American birth certificate. AuthorityRumor mill (no identifiable authority, but so often repeated that the statement becomes accepted as truth)
Crystal therapy can restore harmony and peace of mind by clearing negative energy blocks that we have deep within us. AuthorityPersonal experienceDesire for the statement to be true

 

In the last part of the exercise, students are asked to strike lines through ways of knowing that are not used in science.   Some ways of knowing are eliminated easily (revelation, desire for a thing to be true, rumor mill), while others require deeper analysis.  For example, intuition is used in science for formulating ideas, but not as a basis for concluding that ideas have scientific validity.  Typically, three ways of knowing are left at the end:  authority, logic, and personal experience.

By comparing the ways of knowing used in social thinking to those used in science, one can see why social controversies often persist when a scientific consensus has been reached.  Social thinking incorporates a wider variety of ways of knowing, and is not necessarily grounded in the three tenets of science (Schafersman 1994):  (a) empiricism, a demand for data that can be independently verified; (b) skepticism, a willingness to abandon established conclusions in light of new information; and (c) rationalism, the principle of noncontradiction.

Having prepared students with an introduction to metacognition, I encounter less resistance when teaching theories of evolution, global warming, and genetic engineering.  Having recognized the fundamental differences between scientific and social thinking, students are better able to accept that different conclusions are likely to result from divergent practices in thinking.

 

Byford, J., Lennon, S., & Russell III, W.B. (2009.)  Teaching controversial issues in the social studies: a research study of high school teachers. The Clearing House 82(4), 165 – 170.

Clough, M. P.  (1994.)  Diminish students’ resistance to biological evolution.  The American Biology. Teacher 56(7), 409 – 415.

Johnson, R. L., & Peeples, E.E.  (1987.)  The role of scientific understanding in college. The American Biology. Teacher 49(2), 93 – 98.

Schafersman, S. D.  (1994.)  An introduction to science: scientific thinking and the scientific method. Available online at: http://www.freeinquiry.com.

Shipman, H. L., Brickhouse, N.W., Dagher, Z. & Letts IV, W.J.  (2002.)  Changes in student views of religion and science in a college astronomy course.  Science Education 86(4), 526 – 547.

Sinclair, A., Pendarvis, M.P., & Baldwin, B.  1997.  The relationship between college zoology students’ beliefs about evolutionary theory and religion.  Journal of Research and Development in Education 39(2), 118 – 125.

 

* Disclaimer: The views expressed in this document are those of the authors and do not reflect the official policy or position of the U. S. Air Force, Department of Defense, or the U. S. Govt.