How do you know you know what you know?

by Patrick Cunningham, Ph.D., Rose-Hulman Institute of Technology

Metacognition involves monitoring and controlling one’s learning and learning processes, which are vital for skillful learning. In line with this, Tobias and Everson (2009) detail the central role of accurate monitoring in learning effectively and efficiently. Metacognitive monitoring is foundational for metacognitive control through planning for learning, selecting appropriate strategies, and evaluating learning accurately (Tobias & Everson, 2009).

Hierarchy of Metacognitive Control, with Monitoring Knowledge at the bottom, followed by Selecting Strategies, Then Evaluating Learning, with Planning at the top

Figure 1 – Hierarchy of metacognitive regulatory processes. Adapted from Tobias and Everson (2009).

Unfortunately, students can be poor judges of their own learning or fail to engage in the judging of their learning and, therefore, often fail to recognize their need for further engagement with material or take inappropriate actions based on inaccurate judgements of learning (Ehrlinger & Shain, 2014; Winne and Nesbit, 2009). If a student inaccurately assesses their level of understanding, they may erroneously spend time with material that is already well known or they may employ ineffective strategies, such as a rehearsal strategy (e.g., flash cards) to build ROTE memory when they really need to implement an elaborative strategy (e.g., explaining the application of concepts to a new situation) to build richer integration with their current knowledge. This poor judgement extends to students’ perceptions of the effectiveness of their learning processes, as noted in the May 14th post by Sabrina Badali, Investigating Students’ Beliefs about Effective Study Strategies[. There Badali found that students were more confident in using massed practice over interleaved practice even though they performed worse with massed practice.

Fortunately, we can help our students to develop more accurate self-monitoring skills. The title question is one of my go-to responses to student claims of knowing in the face of poor performance on an assignment or exam. I introduced it in my April 4th blog post, Where Should I Start with Metacognition? It gently, but directly asks for evidence for knowing. In our work on an NSF grant to develop transferable tools for engaging students in their metacognitive development, my colleagues and I found that students struggle to cite concrete and demonstrable (i.e., objective) evidence for their learning (Cunningham, Matusovich, Hunter, Blackowski, and Bhaduri, 2017). It is important to gently persist. If a student says they “reviewed their notes” or “worked many practice problems,” you can follow up with, “What do you mean by review your notes?” or “Under what conditions were you working the practice problems?” The goal is to learn more about the students’ approach while avoiding making assumptions and helping the student discover any mismatches.

We can also spark monitoring with pedagogies that help students accurately uncover present levels of understanding (Ehrlinger & Shain, 2014). Linda Nilson (2013) provides several good suggestions in her book Creating Self-Regulated Learners. Retrieval practice takes little time and is quite versatile. Over a few minutes a student recalls all that they can about a topic or concept, followed by a short period of review of notes or a section of a book. The whole process can be done individually, or as individual recall followed by pair or group review. Things that are well-known are present with elaborating detail on the list. Less well-known material is present, but in sparse form. Omissions indicate significant gaps in knowledge. The practice is effortful, and students may need encouragement to persist with it.

I have used retrieval practice at the beginning of classes before continuing on with a topic from the previous day. It can also be employed as an end-of-class summary activity. I think the value added is worth the effort. Because of its benefits and compactness, I also encourage students to use retrieval practice as a priming activity before regular homework or study sessions. Using it in class can also lower students’ barriers to using it on their own, because it makes it more familiar and it communicates the value I place on it.

Nilson (2013) also offers “Quick-thinks” and Think Aloud problem -solving. “Quick-thinks” are short lesson breaks and can include “correct the error” in a short piece of work, “compare and contrast”, “reorder the steps”, or other activities. A student can monitor their understanding by comparing to the instructor’s answer or class responses. Think Aloud problem-solving is a pair activity where one student talks through their problem-solving process while the other student listens and provides support, when needed, for example, by prompting the next step or asking a guiding question. Students take turns with the roles. A student’s fluency in solving the problem or providing support indicates deeper learning of the material. If the problem-solving or the support are halting and sparse, then those concepts are less well-known by the student. As my students often study in groups outside of class, I recommend that they have the person struggling with a problem or concept talk through their thinking out loud while the rest of the group provides encouragement and support.

Related to Think Alouds, Chiu and Chi (2014) recommend Explaining to Learn. A fluid explanation with rich descriptions is consistent with deeper understanding. A halting explanation without much detail uncovers a lack of understanding. I have used this in various ways. In one form, I have one half of the class work one problem and the other half work a different problem or a variant of the first. Then I have them form pairs from different groups and explain their solutions to one another. Both students are familiar with the problems, but they have a more detailed experience with one. I also often use this as I help students in class or in my office. I ask them to talk me through their thinking up to the point where they are stuck, and I take the role of the supporter.

The strategies above provide enhancements to student learning in their own right, but they also provide opportunities for metacognitive monitoring – checking their understanding against a standard or seeking objective evidence to gauge their level of understanding. To support these metacognitive outcomes I make sure to explicitly draw students’ attention to the monitoring outcomes when I use pedagogies to support monitoring. I am also transparent about this purpose and encourage students to seek better evidence on their own, so they can truly know what they know.

As you consider adding activities to your course that support accurate self-assessment and monitoring, please see the references for further details. You may also want to check out Dr. Lauren Scharff’s post “Know Cubed” – How do students know if they know what they need to know? In this post Dr. Scharff examines common causes of inaccurate self-assessment and how we might be contributing to it. She also offers strategies we can adopt to support more accurate student self-assessment. Let’s help our student generate credible evidence for knowing the material, so they can make better choices for their learning!

References

Chiu, J. L. & Chi, M. T. H.  (2014). Supporting Self-Exlanation in the Classroom. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.). Applying science of learning in education: Infusing psychological science into the curriculum. Retrieved from the Society for the Teaching of Psychology web site: http://teachpsych.org/ebooks/asle2014/index.php

Cunningham, P., & Matusovich, H. M., & Hunter, D. N., & Blackowski, S. A., & Bhaduri, S. (2017), Beginning to Understand Student Indicators of Metacognition.  Paper presented at 2017 ASEE Annual Conference & Exposition, Columbus, Ohio. https://peer.asee.org/27820

Ehrlinger, J. & Shain, E. A.  (2014). How Accuracy in Students’ Self Perceptions Relates to Success in Learning. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.). Applying science of learning in education: Infusing psychological science into the curriculum. Retrieved from the Society for the Teaching of Psychology web site: http://teachpsych.org/ebooks/asle2014/index.php

Nilson, L. B. (2013). Creating Self-Regulated Learners: Strategies to Strengthen Students’ Self-Awareness and Learning Skills. Stylus Publishing: Sterling, VA.

Tobias, S. & Everson, H. (2009). The Importance of Knowing What You Know: A Knowledge Monitoring Framework for Studying Metacognition in Education. In Hacker, D., Dunlosky, J., & Graesser, A. (Eds.) Handbook of Metacognition in Education. New York, NY: Routledge, pp. 107-127.

Winne, P. & Nesbit, J. (2009). Supporting Self-Regulated Learning with Cognitive Tools. In Hacker, D., Dunlosky, J., & Graesser, A. (Eds.) Handbook of Metacognition in Education. New York, NY: Routledge, pp. 259-277.



Awareness of Fractals Strengthens Metacognition Needed for Enacting Informed Teaching Philosophies

by Dr. Ed Nuhfer, California State Universities (retired)

Since 2002, I’ve written a theme-based column, “Developers’ Diary,” for The National Teaching and Learning Forum (NTLF). The central theme through all of these columns is “educating in fractal patterns.” Additionally, I facilitated week-long retreats from 1993 to 2010, and still run workshops, both of which employ visualization of a fractal generator as an aid to understanding concepts of teaching and learning. The wonderful “LAMP” (Learning Actively Mentoring Program) program at the University of Wyoming, where I serve as a mentor, continues to incorporate this aid in participants’ development of informed teaching philosophies.

In writing involved with our academic professions, perhaps no documents are so much the products of metacognition as our written teaching philosophies. These come from within us, which may account for their being so challenging to write. The information-gathering and evidence-based kinds of education through which we mastered most of our own education rarely gave us much practice for metacognitive self-assessment and deep self-reflection.

When properly used, the value of a teaching philosophy lies in “shaping” and nurturing the continuous growth of its author’s expertise. Rather than just a statement, the document serves to direct the author’s intention to enact the practices espoused in the philosophy. In this column, I seek to infuse readers’ already developed metacognitive capacities with an added dimension of “fractal awareness.”

Fractals: Why “Y” Why?

A fractal form is one that develops through growing from a “seed” called a generator (Fig. 1). Development involves repeatedly connecting additional generators to the growing structure. Thus, the character of the full form depends on the characteristics of the generator. A generator consists of simple Euclidean parts, perhaps the simplest being a straight-line segment. We enlist Figure 1 to clarify how initiators form generators, and fractal forms grow through recursively adding more and more generators.

Four levels of fractal development: initiator, generator, fractal form, complex fractal form

Figure 1. Development of a branching fractal form from a “Y-shaped” generator and its precursor initiator (from Nuhfer, 2007). Fractal shapes are the most common of all natural forms. Plants, mountains, clouds, coastlines, patterns of natural events in time like rainfall and floods, blood vessels, and the neural networks in our brains are examples of natural fractal forms.

The concept of fractal form is more than an abstract visualization that inspires creatively thinking about the process of becoming educated. The neural connections that develop in our brains through learning really are fractal forms. When we learn, we connect and stabilize fractal neural networks, so a good deal of our thinking and behavior almost surely has fractal qualities. We can enhance our understanding of educating and becoming educated by discovering the fractal qualities that these endeavors exhibit. One of the most important to recognize is that healthy final forms grow from robust generators. In practice, we can build a sturdy generator from a “blueprint” established by writing a well-informed teaching philosophy. If we mindfully practice this philosophy, the strengths and omissions of our “generator” grow into the strengths and blind spots that characterize our practice.

The branching fractals that develop in our brains are certainly more complex than the model in Figure 1, but even that simple figure helps us to understand and explain countless aspects of the process of learning and, over time, developing higher level thinking capacities.

The Philosophy as a Fractal Generator for Teaching, Learning, and Thinking

The statement, “Metacognition is thinking about thinking” always triggers the question, “What do we think about?” The fractal generator (Fig. 2) in use by me for about the past two decades tends to trigger six items for consideration in what to “think about” to build an informed philosophy. The meaning of “informed philosophy” extends beyond a document informed by a solid base of research on teaching, learning, and thinking. The term “informed philosophy,” as used here, is a document that reflects the growing understanding of ourselves in concert with our growth in knowledge, skills, and evidence-based practices.

Three components in blue (Fig. 2) are mostly components of skills and knowledge. Development of strengths in these three areas comes mainly (not wholly) from external sources. These include the research provided from the literature and from our network of colleagues who help us to build our content expertise and our awareness of varied pedagogical approaches and assessment practices. These originate primarily from resources from outside self, and we mostly develop our practice by drawing on these contributions.

Illustration of components (thinking, teaching, learning) in the fractal generator for faculty and students (by Ed Nuhfer)

Figure 2. A fractal generator model for higher education begins with an initiator that is affect. No deliberate efforts to teach or learn are devoid of affective qualities. Without affective desire to learn to value any of the six areas, such areas will not develop. Practice will then grow from a stunted generator.

The components in red that we call “internal strengths” (Fig. 2) require understanding that develops primarily from within us. The initiator for our generator (Fig. 2) is the red line segment at the base of the generator, which represents our affective feelings. Strong affective interest and enthusiasm may be our most valuable assets for guiding learning efforts to success. We needed to want to do something such as attend college, major in an area that felt attractive and to continue acting to achieve expertise by persevering to develop. That desire comes from within. When our affective passion and cognitive focus align for learning, we are unlikely to fail.

Finding Our Initiators from Within

In starting to write a teaching philosophy, a valuable awareness occurs when we query ourselves about how we obtained our present affective desires for what we aspire to do. Recalling an influential mentor often reveals from whom, when, and where that initial desire occurred. Recollecting a mentor’s valued qualities often reveals that how a teacher now hopes to be remembered began to form with learning to appreciate the power and validity of a particular mentor’s qualities. These recollections usually carry strong emotional ties, and early ideas that produced our conceptions of what constitutes good teaching can be beneficial if they really fit us. They can also be limiting if we unconsciously attempt to imitate a revered mentor rather than advance to develop the teaching that arises from our unique experiences and values.

Cultivating the habit of regular metacognitive conversations with ourselves allows us to confront a query of great importance: “Is what I am doing in the present truly what I most intended to do?” If not, the revised philosophy serves to direct our efforts back to regain doing what we intended to do. That practice allows us to tap the optimal power of affect by doing what a plan of deep introspection revealed that we most wanted to do in our practice. When a troubling event starts to occur, a valuable first reflection is, “Am I actually practicing my philosophy through how I am engaging with this challenge?” Often, we will find that troublesome events occur from a brief moment of inattention that sidetracks us into doing something other than what we intended to do.

Fractals and Uniqueness

In the neural networks that store the well-developed expertise within our brains, the separate neural components are in communication with one another, and they enlist one another to engage successfully with challenges or unexpected changes. Thus, the six areas of the generator (Fig. 2) that grow through our experience should grow to work simultaneously in active practice. Although I’ve found no contributions to research in faculty development that cannot be addressed from within the components of Figure 2, the fractal model is not one of prescriptive development. It does not lead to producing instructors in cookie-cutter fashion who all think alike and teach alike. Indeed, it cannot.

For the same reason that there are neither two trees nor two rainstorms that are alike, there can be no two brains that wire alike. Small differences between individuals’ generators occur through the unique experiences of each person. As these differences influence the replication through the repeated exercise of one’s practice, they guarantee the development of diversity and uniqueness of every teacher, every student, and thus every teaching moment experienced within a class. An internalized awareness that these will never occur again leads to consciously respecting others and valuing the present moment deeply.

We have seen in this brief entry how becoming aware of the pervasiveness of fractals in the physical world and understanding the role of the generator helps the author appreciate the utility of a written teaching philosophy for illuminating one’s own generator. Through the recursive process of repeated implementation, robust generators significantly strengthen one’s practice through time. In our next blog entry, we will examine metacognition’s specific roles in developing each of the six individual components.

Nuhfer, E. B. (2007). “The ABCs of fractal thinking in higher education.” To Improve the Academy (25) 70-89.


Creating a Proactive Transition for the College Student with LD (Part lll): An Elevator Pitch and the Two O’s

By Mary L. Hebert, PhD; Campus Director, The Regional Center for Learning Disabilities; Fairleigh Dickinson University

I have submitted earlier posts (Part 1; Part 2) that have addressed the transition for high school seniors with a learning disability (LD). I’d like to further propose two concepts from the counselor corner of my work with students with learning disabilities and executive function challenges as they navigate their new college learning environment: an elevator pitch and the two O’s.

Elevator Pitch spelled out in colored blocks

Points of transition, whether perceived as positive or negative, are typically experienced as stressors just by design of being human. Transitions are potentially more stressful for students who have spent a learning career managing an LD.  Anticipatory responses to a transition can include anxiety and concerns about navigating the pace and content of a new academic environment. For a student with an LD, this can feel not just like a change of pace, but rather a frenzied experience without proper preparation.

Metacognition offers an outstanding framework for preparing for this new learning environment. Self-reflection and intrapersonal awareness as far as how the LD has impacted one socially, cognitively and emotionally is an excellent endeavor in order to prepare for the requisite independence of mind and action to tackle the adjustment ahead in college.

Students who have had a documented LD during their k-12 years experience concerns developmentally typical of all new college students:

  • Will I succeed in this new environment?
  • Will I make new friends?
  • How will I manage on my own?

Students with LD, however, sometimes may experience more significant concerns as a result of their prior educational experiences. As these high school seniors transition, they will need to prepare for a new learning environment, one where they are starting everything anew and independently. They will not have the familiar support and structure of a case manager, parents, clearly demarcated schedule encompassing their entire day, or other familiar assistive supports that helped them navigate the terrain of their high school educational experience.

In this post I will focus on two concepts that I have utilized during my time as a counselor for college students with LD. Both of these are transition “tools of mind” that provide a metacognitive orientation to adjustment to college life. The first is the importance of having an Elevator Pitch at the ready upon entry to college. The second is the awareness and reflection on The Two O’s: opportunities and obstacles. As stated in my prior posts, my mission is to support students by helping them prepare, which will ease transition stress and increase readiness. Preparation prevents perspiration!

The Elevator Pitch

We have all heard this expression as it relates to the opportunities in business and ‘selling oneself’ for a position when one does not have much time to pitch their fit for a job. In the case of a student with LD, they will need to be able to independently articulate their needs to relevant others in the college setting. For students with LD it may be challenging to speak in an impromptu fashion with individuals they do not know well. A prepared elevator pitch will help them in such situations.

The elevator pitch becomes particularly important when a student will need to advocate on their own behalf. Self – advocacy skills are significantly associated with success in the college setting. Having a parsimonious, prepared statement of one’s needs at the ready can be advantageous for the student with a LD entering a new learning environment and adjusting to more independent self-advocacy.

An accurate self- assessment or metacognitive reflection of one’s strengths, skills sets and challenges is essential for academic as well as future career selection. Often times, students who have moved through their education with an LD have had to focus significantly on tackling skills sets such as reading, writing, math and other core academic skills. This focus can take away from time spent considering their goals and strengths, which should be the foundation for self-advocacy.  Solid self-advocacy improves the likelihood for a gratifying personal and career experience (Palmer and Roessler, 2000).

I suggest that students be proactive and prepare a metacognitive reflection of their LD, characteristics of its impact on their academics, and what they know to be helpful in their educational environment. It is also key for them to become knowledgeable about college-level accommodations and the rights they will have in college to seek out services for their learning needs. It is advantageous to apply metacognition in a way that will foster an opportunity to  reflect and prepare a succinct, effective pitch that achieves key goals as they adjust to their new learning environment. These key goals include:

  • Self Advocacy
  • Self Awareness
  • Self Efficacy

I like to think of these three goals as the ultimate selfies!  The ability to convey their learning needs and goals to their disability coordinator, a professor, a tutor or another professional in their college environment will be essential to have at the ready. Doing so will decrease stress and increase the ultimate selfies.

Obstacles and Opportunities (the two O’s)

There will be both opportunities and obstacles. Simply and plainly, there is no escaping either for ANY student. Preparing in a metacognitive manner about both these types of eventual experiences will benefit any student but particularly a student with a history of LD.  Provide metacognitive reflection prompts by asking these or similar questions of your student:

  • What have been some successes in your educational career thus far?
  • What have you learned from these? How have they helped you move ahead in regard to the ultimate selfies?
  • What have been some obstacles in your educational career thus far?
  • What have you gained from these challenges? How have they advanced your movement toward your educational goals?

This metacognitive reflection provides the bedrock for continued reflection at the college level.  From the counselor’s chair it is a continued dialogue of self-discovery as the student ultimately encounters and reflects on opportunities and obstacles. The reflection prompts also provide a vocabulary to frame experiences that feel elusive (the opportunities) as well as the stressors (the obstacles), and these prompts promote turning the latter into openings for growth. And yes, they contribute to the ultimate selfies.

In conclusion, my wish is that the summer brings forth much needed time for students to relax, and have fun. But, importantly, the summer is also the ideal time to reflect on the path traveled thus far and prepare for the future. Metacognition offers an effective tool to apply to past educational endeavors, pave the way for the next educational transition, and create a foundation for success.

Palmer, C. and Richard T. Roessler (2000). Requesting Classroom Accommodations: Self Advocacy and Conflict Resolution Training for College Students with Disabilities. Journal of Rehabilitation. 66 (3): 38-43