Am I responsible for engaging my students in learning how to learn?

by Patrick Cunningham, Rose-Hulman Institute of Technology

I’m a mechanical engineering professor and since my first teaching experience in graduate school I’ve wanted my students to walk away from my classes with deep learning. Practically, I want my students to remember and appropriately apply key concepts in new and different situations, specifically while working on real engineering problems.

In my early years of teaching, I thought if I just used the right techniques, exceptional materials, the right assignments, or the right motivational contexts, then I would get students to deeper learning. However, I still found a disconnect between my pedagogy and student learning. Good pedagogy is important, but it isn’t enough.

On sabbatical 4 years ago, I sat in on a graduate-level cognitive processes course that helped explain this disconnect. It helped me realize student learning is principally determined by the student. What the student does with the information determines the quality of their learning. How they use it. How they apply it. How they practice it. How engaged they are with it. I can provide a context conducive to deeper learning, but I cannot build the foundational and rich knowledge frameworks within the students’ minds. Only the students can do this. In other words, while we, as educators, are important in the learning process, we are not the primary determinants of learning, students are. Students are responsible for their learning, but they don’t universally realize it.

So, how do we help students realize their responsibility for learning? It requires presenting explicit instruction on how learning really works, providing practice with effective approaches to learning, and giving constructive feedback on the learning process (Kaplan, et al. 2013). When left unchecked, flawed conceptions of the learning process at best are allowed to persist and at worst are reinforced. Even when we do not explicitly speak to the learning process with our students, we say something about it. For example, when our primary mode of instruction is walking students through example problems, we may reinforce the belief that learning is about memorizing the process rather than connecting concepts to different contexts and knowing when to apply one concept versus another concept. Sometimes we do speak to students about the learning process, but we offer vague and unhelpful advice, such as, “work more problems”, or “study harder”. Such advice doesn’t point students to specific strategies instrumental in building more interconnected knowledge frameworks (e.g., elaborative and organizational strategies) (Dembo & Seli 2013) and can reinforce surface-level memorization and pattern matching approaches.

Because our teaching doesn’t guarantee student learning, because we desire our students develop deep and meaningful learning, and since we always say something about the learning process (intentionally or not), we, as educators, are responsible for engaging our students in developing as learners. We should be explicitly engaging our students in learning about and regulating their learning processes, i.e., developing their metacognitive skills.

As I advocate for our responsibility to aid students’ in learning how to learn, some common reactions include:

  1. Don’t people figure out how to learn naturally?
  2. Shouldn’t students already do this on their own?
  3. I don’t know metacognition and the science of learning like I know my specialty area.

Don’t we figure out how to learn naturally? Yes, learning is a natural process, but, no, we do not naturally develop deep and efficient approaches to learning – anymore than we naturally develop the skill of a concert musician or any other highly refined practice. Shouldn’t students already do this on their own? Ideally, yes, but the reality is most students’ prior learning experiences have led to ingrained surface learning habits.

Prior learning experiences condition how we go about learning, along with contextual factors, such as the guidance of parents and teachers. In general, students think they are good at learning and don’t see a need to change their approaches. They continue to get good grades using memorization and pattern matching – often cramming for exams – while lacking long-term memory of concepts and the ability to transfer these concepts to real applications. As long as our courses allow students to get good grades (their measures of “success”) with surface learning habits, such views will persist. Deep learning includes memorizing, i.e., knowing, things, but such durable and transferable learning requires much more than just memorization. It takes effortful intellectual engagement with concepts, exploring connections and sorting out relationships between concepts, and accurate self-assessment. Such approaches can be learned, and a few students do. More can if we explicitly guide them. Our students are not lazy, rather they are misguided by prior experiences. Let’s guide them!

I don’t know metacognition and the science of learning like I know my specialty area. Yes, it is important to be knowledgeable and proficient with what we teach. While we have done much with the content in our specialties, we have limited training, if any, training on metacognition (the knowledge and regulation of our thinking/learning processes) and the science of learning. However, as educators trying to improve our craft, shouldn’t we also be students of learning? This can start small and continue as a career-long pursuit. We can always improve! You also likely know more than you think you do. Your self-selection into advanced studies and a college teaching career are not an accident. As part of the select group of academics, you are likely already metacognitively skilled, even if you don’t realize it. Start small, with one thing. Learn about it and practice or recognize it in your own life. For example, peruse a copy of Linda Nilson’s Creating Self-Regulated Learners or James Lang’s Small Teaching, or attend a teaching workshop that sparks your interest. Then, confidently share it with your students and engage them in it as you teach your content. Your authentic experience with it demonstrates its relevance and importance. Once you have become comfortable with this, add another element. Over time, you will build practical expertise about the learning process. Along the way you will likely learn about yourself and make sense of your past (and present) learning experiences. I did!

Need help? Look for my next post, “Where should I start with metacognition?”

Acknowledgements

This blog post is based upon metacognition research supported by the National Science Foundation under Grant Nos. 1433757, 1433645, & 1150384. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. I also extend my gratitude to my collaborating researchers, Dr. Holly Matusovich and Ms. Sarah Williams, for their support and critical feedback.

References

Dembo, M. & Seli, H. (2013). Motivation and Learning Strategies for College Success: A Focus on Self-Regulated Learning (4th ed.). New York, NY: Routledge.

Kaplan, M., Silver, N., Lavaque-Manty, D., Meizlish, D. (Eds.). (2013). Using Reflection and Metacognition to Improve Student Learning. Sterling, VA: Stylus.


Developing Affective Abilities through Metacognition Part 3: Recognizing Parallel Development of Cognition and Affect

by Dr. Ed Nuhfer, California State Universities (retired)

In Part 1, we showed how the initial views of behavioral scientists toward metacognition and affect led for a time to a view of intellectual development as exclusively cognitive. In Part 2, we showed that established ways of knowing each rest on unique concepts, and gaining a working understanding of any way of knowing requires first becoming aware of its supporting concepts.

In Part 2, we used the way of knowing for reaching ethical decisions to illustrate the practical necessity of understanding the four components of ethics and their relationships to each other. There seems to be no profession in which thought and practice do not involve ethical decisions, so it seems no accident that William Perry chose the title: Forms of Ethical and Intellectual Development in the College Years for his landmark book describing how higher education, when successful, changes students’ abilities to think.

Major ways of knowing, obviously ethics but even heavily objective ways of knowing such as science or quantitative reasoning, require us to commit to decisions that resolve conflicts between what we feel we want to be correct with what new knowledge leads us toward knowing to be correct. When a conflict occurs between feeling and knowing, it often arises from life experiences that we have not critically examined but which new knowledge and/or newly acquired processes of critical examination force us to confront. For part 3, we examine the role of metacognition to help understand how intellectual progress causes us to feel in certain ways as we work to gain a college education.

About a decade ago, I discovered that the Bloom team’s Taxonomy of the Affective Domain mapped so well onto the Perry Model of Intellectual Development (Nuhfer, 2008) that it provided a much-needed map for empowering metacognitive reflection on both affect and cognition. The map, summarized in Figure 1, greatly clarified for me how to better promote metacognitive development in both students and faculty. I hope that readers will find this map equally useful.

The researchers’ named equivalent stages of development appear in Figure 1’s rows, and the affective feelings noted in the middle column were those that I deduced from examining the affective comments of students recorded in Perry’s book and other studies, made within the stages deduced through researchers’ longitudinal interviews. Longitudinal studies were the basis for the Perry stages and also for the studies that followed after Perry (see Journal of Adult Development, 2004).

Figure 1. Parallel development of intellectual and affective capacities through higher education (slightly modified from Nuhfer, 2008). Metacognition must engage with emotions (middle column) if it is to be effective in advancing adult intellectual development. Otherwise, metacognition becomes just an additional tool for increasing absorption of disciplinary content.

When students know that becoming educated involves passing through an established sequence of developmental stages, each with its own defining cognitive and affective traits, they have a map that they can use to discover their present location and to guide them toward what lies ahead on the path to gaining an education. Regarding metacognition’s description as “thinking about thinking,” awareness of the sequential stages with their accompanying emotions allows students to expect, reflect, and then resolve the discomforting affective feelings that arise. Trepidation and even some fear are normal, and they even can serve as important indicators of progress in cognitive growth.

Those who strive to become educated engage in a journey toward the highest Perry Stages of intellectual development through passing through the earlier stages. Achieving resolution of our reactive affective feelings that occur during these transitional stages is often an internal struggle. Metacognition, a reflective internal conversation with self about our thinking, seems indispensable to this growth.

Important Questions when Linking Bloom’s taxonomies and Perry’s stages

Bloom’s Taxonomy of the Cognitive Domain (see Scharff, 2017) is one of the best-known contributions to education, but experts debate the degree to which the Bloom cognitive levels are hierarchical, developmental products. In contrast, the developmental character of both the Perry model and the Taxonomy of the Affective Domain is generally accepted. That both address the sequential development of college students explains why the two map better onto one another than do even the two Bloom team’s taxonomies of the cognitive and affective domains.

The map provided by Figure 1 illuminates a possible deficiency of learning design in higher education. Educators consistently refer to Perry’s highest stages of intellectual development (7, 8 & 9 – see Figure 1) as the stages characterized by metacognitive reflection. The lower stages seldom receive that recognition, so why might that be? Is metacognition just not happening in the preceding stages? If so, why not?

If those who have actually engaged in metacognition throughout their intellectual development are just those few who develop metacognitive ability spontaneously on their own, this accounts for its scarcity in the earlier stages and how few achieve the highest stages. Because intellectual and affective development requires passage through a sequence of stages, we instructors can only increase the proportion of those who attain highest-stage reasoning abilities by infusing metacognitive skills into the earlier stages as a part of our instructional design. Such design would shift all students’ perceptions of gaining an education from absorbing content provided by teachers in classrooms toward developing abilities to understand content in concert with developing understanding of self.

Dangerous Passages

Two dangerous passages in the journey through the stages of intellectual development end the educational aspirations of many students to achieve a true education marked with a celebratory graduation. Figure 1 offers a map that reveals the dangerous passages of our journey, where impactful emotions can urge us to give up on our own development. These are places where metacognition informed by only a little research on adult development can provide valuable assistance.

Many lower-division undergraduate students fail to graduate by getting trapped at the lower Perry stages 2 and 3. Stage 2 students typically view the purpose of education as learning facts rather than as experiencing challenges that develop expanded capacities to think. Further, students in Stage 2 often learn that beliefs and childhood teachings that they revere are, upon examination, flawed and perhaps even untrue. This sends them to Stage 3 and the bankrupt belief that all conclusions and arguments are equally valid. From there, educators’ efforts to move students into higher stages of thinking bring forth students’ affective reactions of frustration and bewilderment. These negative feelings can negate students’ trust in teachers and raise students’ doubts about their own abilities. At this stage, gaining relief by giving up can seem an attractive choice.

Another passage takes a similar toll, but this one manifests later, where it produces attrition of nearly half of our brightest students who gained admission to graduate school to achieve doctorates. Most Baccalaureate graduates are only Stage 4 thinkers, and in graduate school, the barrier to completion is the required dissertation, which is a challenging, open-ended Stage 5 project. Stage 5 challenges cannot be addressed by the same approaches that brought much undergraduate success— demonstrating rote knowledge and ability to perform calculations that arrived at uniquely “right answers.” The transition into Perry’s Stage 5 brings proficiency to evaluate conflicting evidence and arrive, not at “right answers,” but at conclusions that are most reasonable after evaluating all of the relevant, conflicting knowledge currently available. This high-attrition passage, not surprisingly, comes again with strong emotions. Powerful negative feelings of personal inadequacy or “imposter syndrome” often accompany the efforts to advance out of Stage 4, and too many graduate students lose confidence and withdraw before they can make the transition. If these distressed students understood the nature of the situation they were in, they likely would persist, trusting that continued perseverance would bring the necessary punctuated transition to Stage 5. With this transition comes the confidence and awareness necessary to engage ambiguous problems, which include dissertations.

In blog column Part 4, we will look at developing the affective quality of academic courage, which allows one to persist through challenges that bring fear and erosion of confidence.

References

Gigerenzer, G. (2007) Gut Feelings: The Intelligence of the Unconscious. New York. Penguin.

Journal of Adult Development (2004) Special volume of nine papers on the Perry legacy of cognitive development. Journal of Adult Development (11, 2) 59-161 Germantown NY: Periodicals Service Co.

Nuhfer, E. B. (2008) The Feeling of Learning: Intellectual Development and the Affective Domain: Educating in Fractal Patterns XXV. National Teaching and Learning Forum 18 1 7-11.