Fostering Metacognition: Right-Answer Focused versus Epistemologically Transgressive

by Craig E. Nelson at Indiana University (Contact: nelson1@indiana.edu)

I want to enrich some of the ideas posted here by Ed Nuhfer (2014 a, b, c and d) and Lauren Scharff (2014). I will start by emphasizing some key points made by Nuhfer (2014 a):

  • Instead of focusing on more powerful ways of thinking, most college instruction has thus far focused on information, concepts and discipline specific skills. I will add that even when concepts and skills are addressed they, too, are often treated as memorizable information both by students and faculty. Often little emphasis is placed on demonstrating real understanding, let alone on application and other higher-level skills.
  • “Adding metacognitive components to our assignments and lessons can provide the explicit guidance that students need. However, authoring these components will take many of us into new territory…” This is tough because such assignments require much more support for students and many of faculty members have had little or no practice in designing such support.
  • The basic framework for understanding higher-level metacognition was developed by Perry in the late 1960s and his core ideas have since been deeply validated, as well as expanded and enriched, by many other workers (e.g. Journal of Adult Development, 2004; Hoare, 2011.).
  • “Enhanced capacity to think develops over spans of several years. Small but important changes produced at the scale of single quarter or semester-long courses are normally imperceptible to students and instructors alike.”

It is helpful (e.g. Nelson, 2012, among many) to see most of college-level thinking as spanning four major levels, a truncated condensation of Perry’s 9 stages as summarized in Table 1 of Nuhfer (2014 a). Each level encompasses a different set of metacognitive skills and challenges. Individual students’ thinking is often a mix or mosaic where they approach some topics on one level and others at the next.

In this post I am going to treat only the first major level, Just tell me what I need to know (Stages 1 & 2 of Table 1 in Nuhfer, 2012 a). In this first level, students view knowledge fundamentally as Truth. Such knowledge is eternal (not just some current best model), discovered (not constructed) and objective (not temporally or socially situated). In contrast, some (but certainly not all) faculty members view what they are teaching as constructed best current model or models and as temporally and socially situated with the subjectivity that implies.

The major cognitive challenges within this first level are usefully seen as moving toward a more complete mastery of right-answer reasoning processes (Nelson, 2012), sometimes referred to as a move from concrete to formal reasoning (although the extent to which Piaget’s stages actually apply is debated). A substantial majority of entering students at most post-secondary institutions have not yet mastered formal reasoning. However, many (probably most) faculty members tacit assume that all reasonable students will quickly understand anything that is asked in terms of most right-answer reasoning. As a consequence, student achievement is often seriously compromised.

Lawson et al. (2007) showed that a simple test of formal reasoning explained about 32% of the variance in final grades in an introductory biology course and was the strongest such predictor among several options. This is quite remarkable considering that the reasoning test had no biological content and provided no measure of student effort. Although some reasoning tasks could be done by most students, an understanding of experimental designs was demonstrated largely by students who scored as having mastered formal reasoning. Similar differences in achievement have been documented for some other courses (Nelson, 2012).

Nuhfer (2014 b) and Scharff (2014) discuss studies of the associations among various measures of student thinking. From my viewpoint, their lists start too high up the thinking scale. I think that we need to start with the transitions between concrete and formal reasoning. I have provided a partial review of key aspects of this progression and of the teaching moves that have been shown to help students master more formal reasoning, as well as sources for key instruments (Nelson, 2012). I think that such mastery will turn out to be especially helpful, and perhaps essential, to more rapid development of higher level-reasoning skills.

This insight also may helps to resolve a contrast, between the experience of Scharff and her colleagues (Scharff, 2014) and Nuhfer’s perspective (2014 b). Scharff reports: “At my institution we have some evidence that such an approach does make a very measurable difference in aspects of critical thinking as measured by the CAT (Critical Thinking Assessment, a nationally normed, standardized test …).” In his responses, Nuhfer (2014 b) emphasizes that, given how we teach, there is, not surprisingly, very little change over the course an undergraduate degree in higher-order thinking. (“… the typical high school graduate is at about [Perry] level 3 2/3 and the typical college graduate is a level 4. That is only one-third of a Perry stage gain made across 4-5 years of college.”)

It is my impression that the “Critical Thinking Assessment” discussed by Scharff deals primarily with right-answer reasoning. The mastery of the skills underlying right-answer reasoning questions is largely a matter of mastering formal reasoning processes. Indeed, tests of concrete versus formal reasoning usually consist exclusively of questions that have very clear right answers. I think that several of the other thinking assessments that Nuhfer and Scharff discuss also have exclusively or primarily clear right-answers. This approach contrasts markedly with the various instruments for assessing intellectual development in the sense of Perry and related authors, none of which focuses on right-answer questions. An easily accessible instrument is given the appendices of King and Kitchener (1994).

This leads to three potentially helpful suggestions for fostering metacognition.

  • Use one of the instruments for assessing concrete versus formal reasoning as a background test for all of your metacognitive interventions. This will allow you to ask whether students who perform differently on such an assessment also perform differently on your pre- or post-assessment, or even in the course as a whole (as in Lawson et al. 2007).
  • Include interventions in your courses that are designed to help students succeed with formal, right-answer reasoning tasks. In STEM courses, teaching with a “learning cycle” approach that starts with the examination or even the generation of data is one important, generally applicable such approach.
  • Carefully distinguish between the ways that you are helping students master right-answer reasoning and the ways you are trying to foster more complex forms of reasoning. Fostering right-answer reasoning will include problem-focused reasoning, self-monitoring and generalizing right-answer reasoning processes (e.g. “Would using a matrix help me solve this problem?”).

Helping students move to deeper sophistication requires epistemologically transgressive challenges. Those who wish to pursue such approaches seriously should examine first, perhaps, Nuhfer’s (2014d) “Module 12 – Events a Learner Can Expect to Experience” and ask how one could foster each successive step.

Unfortunately, the first key step to helping students move beyond right-answer thinking requires helping them understand the ways in which back-and-white reasoning fails in one’s discipline. For this first epistemologically transgressive challenge, understanding that knowledge is irredeemably uncertain, one might want to provide enough scaffolding to allow students to make sense of readings such as: Mathematics: The Loss of Certainty (Kline, 1980); Be Forewarned: Your Knowledge is Decaying (Arbesman, 2012); Why Most Published Research Findings Are False (Ioannidis, 2005); and Lies, Damned Lies, and Medical Science (Freedman, 2010).

As an overview for students of the journey in which everything becomes a matter of better and worse ideas and divergent standards for judging better, I have had some success using a heavily scaffolded approach (detailed study guides, including exam ready essay questions, and much group work) to helping students understand Reality Isn’t What It Used to Be: Theatrical Politics, Ready-to-Wear Religion, Global Myths, Primitive Chic, and Other Wonders of the Postmodern World (Anderson,1990).

We have used various heavily scaffolded, epistemologically transgressive challenges to produce an average gain of one-third Perry stage over the course of a single semester (Ingram and Nelson, 2009). As Nuhfer (2014b) noted, this is about the gain usually produced by an entire undergraduate degree of normal instruction.

And for the bravest, most heavily motivated faculty, I would suggest In Over Our Heads: The Mental Demands of Modern Life (Kegan, 1994). Kegan attempts to make clear that each of us has our ability to think in more complex ways limited by epistemological assumptions of which we are unaware. This is definitely not a book for undergraduates nor is it one that easily embraced by most faculty members.

REFERENCES CITED

  • Hoare, Carol. Editor (2011). The Oxford Handbook of Reciprocal Adult Development and Learning. 2nd Edition. Oxford University Press.
  • Ingram, Ella L. and Craig E. Nelson (2009). Applications of Intellectual Development Theory to Science and Engineering Education. P 1-30 in Gerald F. Ollington (Ed.), Teachers and Teaching: Strategies, Innovations and Problem Solving. Nova Science Publishers.
  • Ioannidis, John (2005). “Why Most Published Research Findings Are False.” PLoS Medicine August; 2(8): e124. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327/ [The most downloaded article in the history of PLoS Medicine. Too technical for many first-year students even with heavy scaffolding?]
  • Journal of Adult Development (2004). [Special volume of nine papers on the Perry legacy of cognitive development.] Journal of Adult Development 11(2):59-161.
  • King, Patricia M. and Karen Strohm Kitchner (1994). Developing Reflexive Judgment: Understanding and Promoting Intellectual Growth and Critical Thinking in Adolescents and Adults. Jossey-Bass.
  • Kline, Morris (1980). Mathematics: The Loss of Certainty. Oxford University Press. [I used the summary (the Preface) in a variety of courses.]
  • Nelson, Craig E. (2012). “Why Don’t Undergraduates Really ‘Get’ Evolution? What Can Faculty Do?” Chapter 14 (p 311-347) in Karl S. Rosengren, E. Margaret Evans, Sarah K. Brem, and Gale M. Sinatra (Editors.) Evolution Challenges: Integrating Research and Practice in Teaching and Learning about Evolution. Oxford University Press. [Literature review applies broadly, not just to evolution]