Metacognition at Goucher II: Training for Q-Tutors

FacebooktwittermailFacebooktwittermail

by Dr. Justine Chasmar & Dr. Jennifer McCabe; Goucher College

In the first post of this series, we described various implementations of Goucher College’s metacognition-focused model called the “New 3Rs”: Relationships, Resilience, and Reflection. Here we focus on how elements of metacognition have driven the training of tutors in Goucher’s Quantitative Reasoning (QR) Center.

image from https://www.goucher.edu/explore/ (faculty and student giving a high five)

The QR Center was established in the fall of 2017 to support the development of numeracy in our students and also specifically to bolster our new data analytics general education requirement (part of the Goucher Commons Curriculum, described in depth in our first article). The QR Center started at a time of transition as Goucher shifted from a one-course quantitative reasoning requirement to a set of two required courses: foundational data analytics and data analytics within a discipline. The QR Center mission is to help students with quantitative skill and content development across all disciplines, with a focus on promoting quantitative literacy. To foster these skills, the QR Center offers programming such as appointment-based tutoring, drop-in tutoring, workshops, and academic consultations, with peers (called Q-tutors) as the primary medium of support.

Metacognition is a guiding principle for the QR Center – especially reflection and self-regulated learning. This theme is woven through each piece of QR Center programming, from a newly-developed tutor training course to the focus on academic skill-building at tutoring sessions.

To support the professional development and training of the Q-tutors, the director (co-author of this blog, Dr. Justine Chasmar) created a one-credit course required for all students new to the position. This course combines education, mathematics, quantitative reasoning, and data analytics, and focuses on the intersection of teaching pedagogy within each realm. Because it is primarily set within the context of quantitative content, this course is more focused, and inherently more meaningful, than traditional tutor training. The course is also unique in combining practical exercises with metacognitive reflection. Individual lessons range from basic pedagogy to reviews of essential quantitative content for the tutoring position. Learning is scaffolded by supporting professional practice with continuous reflection and applications toward improved self-regulated learning – both for the tutors and for the students they will assist.

The content of each tutor preparation class meeting is sandwiched by metacognitive prompting. Before class, the Q-tutors prepare, engage, and reflect; for example, they may read a relevant piece of literature and respond to several open-ended reflective prompts about the reading (see “Suggested Readings” below). The synchronous tutor preparation class lesson, attended by all new Q-tutors and the director who teaches the course, involves discussion and other activities relating to the assigned reading, especially emphasizing conversation about issues or concerns the tutors are facing in their new roles. The “metacognition sandwich” is completed by a reflective post to a discussion board, where the Q-tutors respond and build on each other’s reflections, describing what they had learned that day, asking and answering questions, and elaborating on how to apply the lesson to tutoring.

In addition to these explicit reflection activities, the tutor preparation course facilitates discussion of the use and importance of self-regulated learning strategies (SRL) and behaviors. Q-tutors are provided many opportunities to reflect on their own learning. For example, they complete and discuss multiple SRL-based inventories, such as the GAMES (Svinicki, 2006) and the Index of Learning Styles Questionnaire (credit to Richard Felder and Barbara Solomon). Class lessons revolve around evidence-based learning strategies, such as self-testing, help-seeking, and techniques to transform information.

One assignment requires tutors to create and present a “study hack,” an idea adapted from a thread on a popular and supportive listserv for academic support professionals (LRNASST). The assignment, inherently reflective, allows the tutors to consider strategies they successfully utilize, summarize that information, and translate the SRL strategy into a meaningful presentation and worksheet for the tutor group. The Q-tutors present their “study hacks” during class time, with examples from past semesters ranging from mindfulness exercises to taking notes with color coding. These worksheets are also saved as a resource for students so they can learn from SRL strategies endorsed by Q-tutors.

Q-tutors are encouraged to “pay forward” their metacognitive training by focusing on SRL and reflection during their tutoring sessions. They teach study strategies such as self-testing and learning-monitoring, and support student reflection through “checking for understanding” activities at the end of each tutoring session. Tutors know that teaching study skills is one of the major priorities during tutoring sessions; and they close the loop by meeting with other tutors regularly to discuss new and useful skills they can communicate to students they work with. Tutors also get a regular reminder about the importance of study skill development when they read the end-of-appointment survey responses from their tutees, particularly in response to the prompt for “study skill reviewed.”

As a summative assignment in the course, Q-tutors write a Tutoring Philosophy, similar to a teaching statement. By this time, the tutors have gained an awareness of the importance of SRL and metacognitive reflection, as seen in excerpts from sample philosophies from previous semesters:

I strive to strengthen numeracy within our tutees, rid them of their anxieties surrounding quantitative subjects, and build up their skills to become better learners.

Once the tutee gains enough trust and confidence in the material, it is essential for them to begin guiding the direction of the session toward their own learning goals.

By practicing good study habits, self-advocacy, organizational skills, and a     calm demeanor when tutoring, tutees learn what it takes to be a better student.

By thinking intentionally about what it means to be an effective tutor,these students realize that they must model what they teach in a reflective, continuous mutual-learning process: “[In tutoring] my job is to identify what each person needs, use my skills to support their learning, and reflect on these interactions to improve my methods over time.”

In sum, using an intentional metacognitive lens, Q-tutor training at Goucher College supports quantitative skills and general learning strategies in the many students the QR Center reaches. Through this metacognitive cycle, the QR Center supports Goucher’s learning community in improving the Reflection component of the Goucher 3Rs.

Suggested References

Scheaffer, R. L. (2003). Statistics and quantitative literacy. Quantitative Literacy: Why Numeracy Matters for Schools and Colleges, 145-152. Retrieved from https://www.maa.org/sites/default/files/pdf/QL/pgs145_152.pdf

Siegle, D., & McCoach, D. B. (2007). Increasing student mathematics self-efficacy through teacher training. Journal of Advanced Academics, 18, 278–312. https://doi.org/10.4219/jaa-2007-353

Svinicki, M. D. (2006). Helping students do well in class: GAMES. APS Observer, 19(10). Retrieved from https://www.psychologicalscience.org/observer/helping-students-do-well-in-class-games


Williamson, G. (2015). Self-regulated learning: an overview of metacognition, motivation and behaviour. Journal of Initial Teacher Inquiry, 1, 25-27. Retrieved from http://hdl.handle.net/10092/11442